Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
The motion of a resonant NEMS has been widely studied for many different applications such as structural mechanics in engineering, ultra sensitive mass spectrometers or the well known Atomic Force Microscope. The study of the eigenfrequencies of such structures is very important, and ... Mehr lesen
Interaction between the probe and a defect in eddy current non-destructive evaluation is studied. Evaluation of sensor signal response is the basis for the calculation. In this work a differential sensor is considered and the problem regarded here is problem 8 from the testing of ... Mehr lesen
In this work, a 2D dynamic simulation for a portion of metal hydride based hydrogen storage tank was performed using computational software COMSOL 4.0a Multiphysics. The software is used to simulate the diffusion and heating of hydrogen in both radial and axial directions. The model ... Mehr lesen
A laboratory-scale fluorine reactor was simulated with COMSOL Multiphysics®. This model employs fundamental fully coupled electron-, heat-, mass- and momentum transfer (two-phase) equations to deliver a transient model of the above-mentioned reactor. Quasi-steady-state results were ... Mehr lesen
For the numerical solving of the equations, Comsol has been applied. Simulations have been modeled in 2D Cartesian, in cylindrical coordinate system and in a “mantle-like” cylindrical-shell. Mantle dynamics is controlled by the Rayleigh number (Ra), which is the ratio of the buoyancy ... Mehr lesen
An axially symmetric multiphysics model for industrial induction furnaces has successfully been converted from COMSOL Multiphysics version 3.5a to version 4.2. The model combines computation of magnetic fields, heat transfer and thermal stresses. The inner part of the furnace is ... Mehr lesen
Sensors for industrial applications require electro-magnetic compatibility protection elements. It is an advantage to incorporate the protection elements directly in the application specific integrated circuit (ASIC). These protection elements however experience significant heating. It ... Mehr lesen
We present an easy-to-use toolbox for the automated generation of reduced-order mixed-level models for the evaluation of squeeze-film damping in microelectromechanical systems. The toolbox is programmed in JAVA and heavily exploits the functionality provided by the COMSOL API. The ... Mehr lesen
This paper deals with the design of a viable thermal management solution using La5Ca9Cu24O41 layers for heat channeling. The simulations are carried out with the finite element method using COMSOL Multiphysics Heat Transfer Module. COMSOL 4.2 was used to model and optimize silicon ... Mehr lesen
We deal with Liquid Crystal Elastomers (LCEs) having hybrid alignment (HNEs), that is, fabricated with a given non-homogeneous nematic orientation. For such a materials, permanent distortions induced by deswelling can be compensated by those resulting from cooling below the transition ... Mehr lesen