Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Viscous damping has a significant effect on dynamic performance of the resonators operating within fluid. This work is aimed to find the viscous damping for MEMS torsional paddle operating in air. Interaction of moving structure with the fluid requires a complicated and challenging ... Mehr lesen
A COMSOL Multiphysics® simulation was used to simulate the behavior of a micro-membrane (Acoustic Pixel) to be used as a potential acoustic transducer. The MEMS and Piezoelectric devices interfaces were used to simulate such transducer. A four-cantilever spring configuration is initially ... Mehr lesen
A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the ... Mehr lesen
Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of ... Mehr lesen
3D finite element analysis model has been constructed for testing the directional dependence in a novel form of nanowire array gas flow sensor. Single nanowire (p-type single crystal Silicon) model is developed using fluid structure interaction and piezoresistivity components in the MEMS ... Mehr lesen
The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization ... Mehr lesen
Digital Microfluidic Biochip (DMFB) has been widely used in Lab-on-a-Chip (LoC) for disease diagnosis and treatment applications. To quickly convert traditional analog fluidic sample into digital droplets for DMFB processing, a high-throughput microfluidic droplet dispenser device is ... Mehr lesen
In this research, we use the COMSOL Multiphysics® software to design and simulate a digital microfluidic droplet adapter for board-level biochip integration. Digital Microfluidic Biochip (DMFB) has gained tremendous research interest in recent years due to its importance in Lab-on-a-Chip ... Mehr lesen
Capacitive MEMS sensors offer high spatial resolution, sensitivity and good frequency response. In this paper, we present a circular membrane capacitive MEMS device that finds use both as capacitive micromachined ultrasonic transducer (CMUT) and pressure sensor. The MEMS device is first ... Mehr lesen
Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very ... Mehr lesen