Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Mutual Inductance based Level sensor has been proposed for high temperature (1000 C) molten metal applications. Modelling and Simulation studies are done using COMSOL Multiphysics® to obtain optimum sensor design, excitation frequency and sensor characteristics. Further temperature ... Mehr lesen
The thermal behavior/heat flow of the Moon provides us an insight into its geophysical character and thermal evolution. The thermal behavior within the uppermost (top few meters) regolith layers is more complex due to their complex geometric, thermal and radiative properties. In order to ... Mehr lesen
In the following study COMSOL Multiphysics® was used to simulate evaporation of water droplets in a stream of heated air. This was a precursor to the modeling of a humidifier, which is used to humidify the air supplied to fuel cell stack. Since the percentage of water droplets was ... Mehr lesen
High-power couplers (both coaxial and ridge waveguide type) at UHF frequencies are presently under development for the Low Energy High Intensity Proton Accelerator (LEHIPA) project and 1 GeV proton accelerator at Bhabha Atomic Research Centre. Ridge waveguide coupler transitions the ... Mehr lesen
We present the utilization RF module of COMSOL Multiphysics® for understanding three different types of wave guidance mechanisms in photonic crystal fibers (PCFs), like modified total internal reflection, Bragg’s reflection and resonant trapping of defect mode at Dirac frequency. ... Mehr lesen
In this paper, the influence of carbon nanotube (CNT) in a metal matrix on the buckling behavior of the resulting nanocomposite plate is studied. The Young's moduli of CNT reinforced nanocomposite are predicted first using the representative volume element (RVE) method. CNTs are ... Mehr lesen
Radio-Frequency ablation (RFA) has received a considerable interest as a minimally invasive treatment technique used for destruction of a variety of primary and metastatic hepatic tumors. A parametric study of hepatic radio-frequency ablation using three-dimensional numerical models has ... Mehr lesen
A new microwave cavity for the regeneration of DPF regeneration was proposed and COMSOL Multiphysics® FEM model was used to investigate heating properties of the Silicon Carbide (SiC) based DPF. Electric field profile and thermal profile of the microwave cavity and DPF was established ... Mehr lesen
Simplistic, 1D analytical calculations in electro-magneto-hydrodynamics are attractive to technologists and researchers given the computational resources and time required by 3 dimensional F.E. (Finite Element) tools. However, such analytical calculations need to be checked against 3D ... Mehr lesen
This paper reports the simulation of micro-electro-mechanical system (MEMS) cleanroom for the purpose of determining the effect of particulate contaminants on the static stress response of cantilever type MEMS devices, such as high precision MEMS pressure sensor. The contaminant presence ... Mehr lesen