Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
While the modelling of smooth concentrated contact lubrication has been achieved a few decades ago [1], the engineer is often left with no other option than to neglect many aspects of real-world contacts. Among these aspects, the contribution of roughness in lubricated contacts is ... Mehr lesen
In this paper, the topic of magnetic particle separation in a liquid column based on magnetophoresis is studied in depth. Magnetic powders are important basic materials for filaments, pastes and inks that need to exhibit magnetic properties. The geometric dimensions of the particles are ... Mehr lesen
The objective of this simulation model is to enhance the thermal behavior in a MEMS Gas-Chromatographer (GC) pre-concentrator for Volatile Organic Compounds (VOCs) carried by Helium gas. The simulation plays a critical role in estimating voltages, thermal time constants, and spatial ... Mehr lesen
A robust and computationally efficient homogenization approach, grounded on exact local and integral moments, is proposed to investigate the temporal evolution and asymptotic properties of the effective velocity vector and the dispersion tensor in Hydrodynamic Chromatographic Columns ... Mehr lesen
In this paper, the topic of frequency-controlled manipulation of sinking particles in a stationary liquid column based on AC dielectrophoresis is studied in depth. Particles sink downwards within a liquid column due to the gravitational force. In doing so, they are subjected to Stokes ... Mehr lesen
Macroscopic modeling of fluid flow and thermal diffusion, in a porous medium, requires the description of equivalent properties (permeability, conductivity and diffusivity). However, depending on the microstructure topology of the porous medium and the fluid flow regime at the ... Mehr lesen
Technical advancements in miniaturization in the last decades have, among others, brought forth the technology of so called “Lab-on-a-Chip” (LOC) systems. These systems provide the possibility to automate and accelerate certain laboratory processes, e.g., biomedical diagnostics, on the ... Mehr lesen
Inertial focusing of particles in a fluid flow is a physical effect induced by inertial forces already happening at the micro-fluidic scale. COMSOL Multiphysics® has provided an implementation of the drag and lift forces to compute this effect for a constant parallel-wall fluid channel ... Mehr lesen
Organs-on-Chips (OoCs) are microfluidics-based systems that aim to recapitulate the in-vivo behaviour of specific organs. Using a network of microfluidic channels, OoCs provide a biophysical and biochemical environment to sustain complex 2D and 3D cell cultures systems that recapitulate ... Mehr lesen
In many medical and biotechnological applications, cells are grown in dynamic cell cultures. Usually, the cells are cultivated on a scaffold with a complex channel structure through which the nutrient fluid flows and into which the cells can grow. However, a known problem is that the ... Mehr lesen