Novel Simulation of a Voltage-Driven Electro-Thermo-Mechanical MEMS Self-Oscillator
This paper presents the modeling and simulation of electro-thermo-mechanical self-oscillators, an emerging type of M/NEMS-enabled timing devices in which sustaining electronic amplifiers are not required for their operation. Indeed, they realize amplification in the mechanical domain and feedback by crossing three physical domains: electrical, thermal and mechanical. In a previous work [1], we proposed a new model to study such kind of MEMS oscillator. We demonstrated also the possible self-oscillation in case of the more attractive and practical direct voltage pumping for devices with a positive piezoresistive coefficient. In this poster, we present a novel COMSOL Multiphysics® finite element model for an electro-thermo-mechanic self-oscillator and according simulations that support our theoretical developments.A complete simulation to describe the behavior of self-oscillation is also presented in this work.
Herunterladen
- 123_presentation.pdf - 1.5MB
- 123_poster.pdf - 1.92MB
- 123_abstract.pdf - 0.13MB