
Heating Of Thermoelectric Bi₈₈Sb₁₂ Thin Film Due To THz Irradiation Absorption

A.Tukmakova¹, A.Asach¹, A.Novotelnova¹, I.Tkhorzhevskiy¹, N.Kablukova¹, P.Demchenko², A.Zaitsev², M.Khodzitsky²

1. Faculty of Cryogenic Engineering, ITMO University, Saint Petersburg, Russia

- 2. International Scientific and Research Institute of Bioengineering, ITMO University, Saint-Petersburg, Russia
- Department of Physics, St. Petersburg State University of Industrial Technologies and Design, St. Petersburg, Russia
 4. Terahertz Biomedicine Laboratory, ITMO University, Saint Petersburg, Russia

OBJECT UNDER THE STUDY: Structure based on $Bi_{88}Sb_{12}$ thin 150 nm film on the dielectric 40 μ m mica substrate. The structure is placed in vacuum and is exposed to irradiation (0,14 THz; 30 mW).

	Bi ₈₈ Sb ₁₂	mica
ε′	- 28091.8	11.9
ϵ''	79432.1	4.3
σ[S/m]	881338. 6	0.0008
$\kappa_{\rm II}[{\rm Wm^{-1}K^{-1}}]$	13.2	5.1
κ⊥[Wm ⁻¹ K ⁻¹]	5.1	0.5
с _р [J·kg ⁻¹ К ⁻¹]	124.4	880

Bi₈₈Sb₁₂ is expected to have a thermal response due to the irradiation absorption that can cause a thermoelectric effect (thermoEMF production).

COMPUTATIONAL METHODS:

The model is based on 2 general interfaces: radio frequency and heat transfer in solids:

$$\nabla \times 1 \mu_r (\nabla \times \mathbf{E}) - k_0^2 (\epsilon_r - j\sigma/\omega\epsilon_0) \mathbf{E} = 0,$$

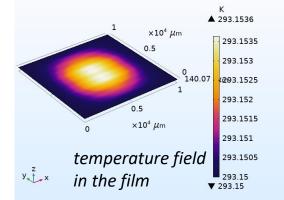
$$\epsilon_r = \epsilon' - j\epsilon'',$$

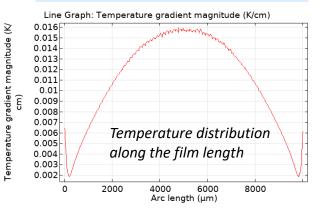
$$\mathbf{q} = -\kappa \nabla T.$$

Electromagnetic heating is described with the following:

$$Q_e = Q_{rh} + Q_{ml} = \frac{1}{2} Re(\boldsymbol{J} \cdot \boldsymbol{E}^*) + \frac{1}{2} Re(i\omega \boldsymbol{B} \cdot \boldsymbol{H}^*).$$

Thin film is described using two interfaces: "thin layer" for solving the heat transfer problem:


$$\nabla_t q_s = d_s Q_s + q_0,$$
$$q_s = -d_s \kappa \nabla_t T$$


and "transition boundary condition" for solving the electromagnetic problem:

$$J_{s.up} = \frac{Z_s \boldsymbol{E}_{t.up} - Z_t \boldsymbol{E}_{t.down}}{Z_s^2 - Z_t^2}$$
$$J_{s.down} = \frac{Z_s \boldsymbol{E}_{t.down} - Z_t \boldsymbol{E}_{t.up}}{Z_s^2 - Z_t^2}$$

The solver type is frequency domain. The mesh is built based on free tetrahedral elements.

CONCLUSIONS: Simulation shows the possibility of $Bi_{88}Sb_{12}$ films heating under the THz radiation. The simulated temperature gradient in the film is from 2 to 16 mK/cm.