

Coil Solver: Gradient Optimization with Scalar Potential Techniques

Austin Reid 2020.10.07 COMSOL Conference: Electromagnetics

INDIANA UNIVERSITY BLOOMINGTON

Scalar Potential Coil Design

Thanks to Chris Crawford. For more detail, see one of his talks here: https://youtu.be/LTuk-sz-ApE

Everybody needs more JD Jackson in their life

Fields via Spherical Harmonics

Vm is defined on a closed volume

- Wires along Vm contours approximate Vm within the full volume
- We're over-solving the problem
- We need holes in the coil surface for
 - Guides
 - Vacuum
 - HV
 - Optics
 - Etc...

We want Vm at a distance

- We apply current just inside the MSR
- We need a uniform field across the storage cells
- Gas species sample the full volume during storage.

Tx: Calculate, invert transfer function

- Given a full basis set of Vm: Σ_{m,ℓ}
- Simulate coil response for each Σ
- Decompose coil response across sample region to $\Sigma_{m,\ell}$
- Orthogonalize response matrix, hope it isn't singular
- Generate a linear sum of Σ 's that yield any desired $\Sigma_{m,\ell}$

$$\Sigma_{l,m} = C_{l,m}(\phi) r^l P_l^{|m|}(\cos\theta), \qquad (4)$$

with

$$C_{l,m}(\phi) = \frac{(l-1)!(-2)^{|m|}}{(l+|m|)!} \cos(m\phi) \quad \text{for} \quad m \ge 0,$$

$$C_{l,m}(\phi) = \frac{(l-1)!(-2)^{|m|}}{(l+|m|)!} \sin(|m|\phi) \quad \text{for} \quad m < 0.$$
(5)

Finally, the modes are obtained by calculating the gradient of the magnetic potential:

$$\Pi_{x,l,m} = \partial_x \Sigma_{l+1,m}, \ \Pi_{y,l,m} = \partial_y \Sigma_{l+1,m}, \ \Pi_{z,l,m} = \partial_z \Sigma_{l+1,m}.$$
(6)

		TABLE II. The basis of harmonic	c polynomials sorted by degree.	
1	m	Π_x	Пу	Πz
0	-1	0	1	0
0	0	0	0	1
0	1	1	0	0
1	-2	у	x	0
1	-1	0	z	у
1	0	$-\frac{1}{2}x$	$-\frac{1}{2}y$	z
1	1	z	0	х
1	2	х	-y	0
2	-3	2xy	$x^{2} - y^{2}$	0
2	-2	2yz	2xz	2xy
2	-1	$-\frac{1}{2}xy$	$-\frac{1}{4}(x^2 + 3y^2 - 4z^2)$	2yz
2	0	-xz	-yz	$z^2 - \frac{1}{2}(x^2 + y^2)$
2	1	$-\frac{1}{4}(3x^2 + y^2 - 4z^2)$	$-\frac{1}{2}xy$	2xz
2	2	2xz	-2yz	$x^{2} - y^{2}$
2	3	$x^{2} - y^{2}$	-2xy	0
3	-4	$3x^2y - y^3$	$x^{3} - 3xy^{2}$	0
3	-3	6xyz	$3(x^2z - y^2z)$	$3x^2y - y^3$
3	-2	$-\frac{1}{2}(3x^2y + y^3 - 6yz^2)$	$-\frac{1}{2}(x^3 + 3xy^2 - 6xz^2)$	6xyz
3	-1	$-\frac{3}{2}xyz$	$-\frac{1}{4}(3x^2z + 9y^2z - 4z^3)$	$3yz^2 - \frac{3}{4}(x^2y + y^3)$
3	0	$\frac{3}{8}(x^3 + xy^2 - 4xz^2)$	$\frac{3}{8}(x^2y + y^3 - 4yz^2)$	$z^3 - \frac{3}{2}z(x^2 + y^2)$
3	1	$-\frac{1}{4}(9x^2z + 3y^2z - 4z^3)$	$-\frac{3}{2}xyz$	$3xz^2 - \frac{3}{4}(x^3 + xy^2)$
3	2	$-x^3 + 3xz^2$	$-3yz^{2} + y^{3}$	$3(x^2z - y^2z)$
3	3	$3(x^2z - y^2z)$	-6xyz	$x^{3} - 3xy^{2}$
3	4	$x^3 - 3xy^2$	$-3x^2y + y^3$	0

Ψ

Rx:

- 1. Solve for idealized Vm
- 2. Extract windings from #1
- 3. Add MuMetal, energize windings
- 4. Solve for Vm across fiducial volume
- 5. Decompose #4 into $\Sigma_{m,\ell}$
 - Surface or Volume integral?
 - Is there a difference in theory?
 - What about FE considerations?

Rx: CoilSolver

- 1. Build COMSOL model with geometry, physics, etc.
- 2. Point MATLAB at model, wait.
- 3. Specify a field. Get back its harmonic expansion.

IGTON

Octocat expansion

GitHub:

https://github.com/MengerSponge/CoilSolver/

Step 1: Penetrations

- 1. Set surface to $\Sigma_{m,\ell}$
- 2. Set hole Vm to $\langle \Sigma_{m,\ell} \rangle_{hole}$
- 3. Allow annulus to float

ារ

Step 2: Getting Contours

- 1. Pick a set of planar faces
- 2. Transform each one to 2D
- 3. Find contour lines across mesh
- 4. Correct direction of contour lines
 - Line collections in 2D are ready to build
 - Line collections need some processing to model robustly

Step 3: Mesh Wires

- 1. Points from plane contour are irregular
- 2. Irregular points lead to poorly defined interpolation curves
- 3. Resample each contour
- 4. Need finer resolution near penetration

	R. 80 M. 38
	300 BAR 200
XXXXX	
XXXXXX	245123465526

Performance

- 1. 20-35 minutes per $\Sigma_{m,\ell}$
- 2. AMD Ryzen 2 Threadripper 2950X, 16-core@3.5GHz (4.4GHz Turbo)
- 3. 35 GB per $\Sigma_{m,l}$ (128 GB RAM DDR4-2666MHz available)
- 4. High order *l* occasionally need some hand-holding to mesh and solve

Automated $\ell=2$ m=0 coils with 12 penetrations

y _ _ _ ,

Open Questions

- 1. If linearizing low order harmonics excites high order ones, is there a preferred order we can use as a "dump stat"?
- 2. Current density?
 - Higher order harmonic corrections are smaller, so can we adapt the number of contour levels as a function of *l*?
- 3. What if we restrict coils to certain faces?
- 4. How high does ℓ need to go? (ℓ =2?)

Conclusions

- 1. Able to generate manufacturable windings on any flat-faced closed surface.
- 2. Constant Vm patches yield reasonable penetrations
- 3. A method that relies on geometric nonlinearities isn't a great candidate for linear transfer functions
- 4. Is there a more clever way to iterate/cancel harmonic contributions?

This work is supported by Los Alamos National Laboratory LDRD and the National Science Foundation, grants PHY-1828512 and PHY-1614545

Thank you! Questions?

ausreid@iu.edu

