STĽ

Modelling Rayleigh Scattering Loss in Arbitrary Profile Fibers

Annesha Maity and Pramod R. Watekar

Center of Excellence, Sterlite Technologies Limited, MIDC Waluj, Aurangabad, Maharashtra, India

Contents

- Introduction
- Theory
- Comsol model
- Explanation
- Conclusion

Introduction

- Rayleigh scattering loss (RSL) contributes almost 80% to fiber attenuation
- Modern optical fibers have ultra-low attenuation with the limit being set by RSL
- RSL arises from random microscopic inhomogeneities which is directly proportional to dopant concentration
- Hence prediction of RSL is needed from designer's point of view
- Here we model RSL for arbitrary profile fiber with gradedindex fiber as an example

Theory and Computations

Graded refractive index profile

Definition and profile parameters

Relative index difference:

$$\Delta(r) = \left(n(r)^2 - n_{sil}^2 \right) / (2n(r)^2)$$

STC

n_{sil}

Varying the profile parameters

STĽ

Theory

- RSL is proportional to $(1/\lambda^4)$, where λ is the light wavelength
- RSL is proportional to the light power profile P(r)
- Finally, RSL is proportional to the Rayleigh scattering coefficient A(r) [1]

• Thus RSL in the fiber core is given by:
$$\alpha_R = \frac{1}{\lambda^4} \int_0^a A(r) P(r) r dr / \int_0^a P(r) r dr$$
Light wavelength

RSC of GeO₂-doped silica is given as [2]: $A(r) = A_0^{(1+44|\Delta(r)|)}$

> [1] M. Ohashi et. al., "Optical loss property of silica-based single-mode fibers," J. Lightw. Technol., 10, pp. 539 – 543 (1992) [2] W. Zhi et. al., "Loss properties due to Rayleigh scattering in different types of fiber," Opt. Exp., 11, pp. 39 – 47 (2003)

RSC of pure silica = $0.8 \text{ dB/km}.\mu\text{m}^4$

Computation in Comsol

- *n*(*r*) is defined
- Hence $\Delta(r)$ is calculated
- Thereby, *A*(*r*) is calculated. Surface plot of *A*(*r*) is shown at the right
- λ was set to 1.55 μm
- **Mesh:** maximum mesh element size set to 0.25µm in the core and 'normal' otherwise
- Wave equations were solved using the 'Wave Optics module'
- This gives the light power profile *P*(*r*)

Results (1)

 RSL was calculated as a function of *α* for different Δs.

STU

- Core radius was set to the standard 4µm
- Plot suggests RSL increases when α and/or Δ increases

STC

© 2019-2020 Sterlite Technologies Limited

Results (3)

STU

- RSL was calculated as a function of Δ for different core radii.
- Plot suggests **RSL** increases when Δ and/or core radius increases

Explanation

STC

Similar explanation holds for the cases of increasing Δ and core dimension

Conclusion

- Till date, there exists model for step-index or equivalent profiles in literature
- We have presented a COMSOL model to calculate RSL of arbitrary profile fiber with graded index fiber as an example
- This model can be useful for predicting fiber attenuation from a designer's perspective

Thank You !!

