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Abstract:  COMSOL is used for obtaining the 
quantum mechanics wave function {Ψn(x,y,z,t)} 
as a solution to the time dependent Dirac equations 
while determining the growth/decay effect of a 
preexisting magnetic vector potential Ā field or 
scalar electric potential φ field on the propagating 
wave function. The probability evaluation of a 
particle being at a spatial point can be treated by a) 
the “matrix mechanics formulation” or b) the 
“wave function formulation”. The latter approach 
is used herein, because it involves solving field 
PDE’s, thus is directly adaptable to COMSOL . 

Keywords: Quantum Mechanics, Time Dependent 
Dirac Equation, Wave Propagation. 

1. Introduction 

The paper illustrates the use of COMSOL for 
obtaining the quantum mechanics wave function 
{Ψn(x,y,z,t)} (representing matter waves) as a 
solution to the time dependent Dirac equations. 
These equations are employed in particle physics 
and historically provided the first combined 
application of quantum mechanics and relativity 
theory by introducing a four component wave 
function {Ψn}, n=1,..4. Historically, {Ψn} 
described the behavior of fermion type particles 
(e.g., electrons) and further predicted the existence 
of antiparticles (e.g., positrons) even before they 
were observed experimentally. COMSOL® Usage: 
the General-Form PDE "time dependent" study is 
employed. Archive Refs. [1-3] solve for Quantum 
Mechanics Dirac wave functions; however, this is 
the first COMSOL application towards solving the 
time dependent Dirac equations for particles in the 
presence of a pre-existing magnetic or electric 
field. It is an extension of Ref.[3] that treated 
solutions in the electric or magnetic influenced 
time independent exp(-iωt) SS (Steady State) case. 

2. Governing Equations/Theory  

Governing equations for the behavior of a free 
fermion particle of mass m in the presence of a 
magnetic and electric field, are represented by the 

time dependent quantum mechanics Dirac 
equations (with wave functions {Ψn(x,y,z,t)} as 
the dependent variables) and are given by [4]: 

where m=particle mass, c= light speed , e=particle 
charge, ℏ =h/(2π), (h is Planck’s constant), i=√(-1). 

Equations(2) relate the normalized vector potential Ā 
and scalar potential Φ to the unnormalized vector magnetic 
B̄  field and electric Ē field ( Ā & φ are unnormalized). 

2.1 Two-D  time dependent form 
A 2-D form of  governing Eqs.(1) are solved in 

time dependent problems using the COMSOL 
MULTIPHYSICS® General-Form PDE "Time 
dependent" studies option. Two dimensional 
solutions are sought where the wave function 
depends on spatial coordinates x,y. Thus setting Az=0  
and letting Ψn gradients in the z direction drop out, 
leads to the 2-D form of Eqs.(1) which are the 
following pair of pde’s Eqs.(4a-b) and pair Eqs.(5a-b). 
In Eqs.(4a-b) and Eqs.(5a-b), nice sized quantities 
are experienced during the computation process, 
by using primed non-dimensional independent variables 
and corresponding PDE parameters, as defined by  
Eqs.(3). The selection of scale values for {T,L} is 
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treated later in 2.4. The Eqs.(4a-b) in terms of 
{Ψ1(x′,y′,t′),Ψ4(x′,y′,t′)} are uncoupled from the 

Eqs.(5a-b) that are in terms of {Ψ2,Ψ3}. Except 
for the M′ sign, Eq.(4a) is just like Eq.(5a) and Eq.
(4b) is just like Eq.(5b) (where Ψ1↔Ψ3 , Ψ4↔Ψ2 . 

Thus the solution procedure for solving 

Eqs(4a-b) are just like solving Eqs.(5a-b), thus we  
focus on solving {Ψ1(x′,y′,t′),Ψ4(x′,y′,t′)}except for 
the later Fig.(3) {Ψ3(x′,y′,t′),Ψ2(x′,y′,t′)}solution example. 

2.2 Governing equations in presence of electric 
potential  Φʹ field alone  (Ā′ =0) 

In Ref.[3], the steady state time independent 
form Eqs.(4a-b) were solved as one uncoupled  
PDE  for Ψ1 after algebraically eliminating Ψ4, 
where Ψ4 was later computed by back substitution. 
A direct coupled approach is used herein (the 
uncoupled elimination was not possible for the 
time dependent equations). An alternate form of 
simultaneous Eqs.(4a-b) is shown in Eqs.(7a-b). 

After setting A ′ = 0, the Eq.(7a) is obtained by 
first summing -i∂/∂y′ of Eq.(4b) + ∂/∂x′ of Eq(4b) 
and then using Eq.(4a) to eliminate the [ ∂Ψ4/∂x′ -
i∂Ψ4 /∂y′ ] term in that sum. Equation (7b) is 
obtained by similarly operating on Eq.(4a). 
Alternate Eqs.(7a-b) have some advantages over 
Eqs.(4a-b), namely: a) the underlying wave 
propagation nature of these equations is evident 
via the embedded classical wave equation 

appearing in the first three terms, b) they appeared 
more computationally stable over long time 
integration histories, c) ease of applying normal 
derivative boundary conditions (e.g. those found in 
zero gradient boundary conditions or in  absorbing 
boundary b.c.’s), and d) unlike Eqs.(4a-b) these 
equations are uncoupled when the electric 
potential is not present ( Φ′=0), where then, each 
one takes on the form of the relativistic Klein-Gordon Eqs. 

Electric Φ′ potential selection: The Eq.(8a) 
scalar potential is selected, and after substituting it 
into the primed seventh of Eqs.(2), gives the 
corresponding Eq.(8b) electric field vector Ē′ : 

where x0′ is the offset distance defining the start of 
the electric field. The size of Eʹ0 is selected large 
enough to feel the influence of the electric field on 
Ψ1(x′,y′,t′) yet small enough to allow the wave 
function solution to continue on as a propagating 
wave and is given by the following Eq.(9) : 

where Eq.(10b) k′D is the free field Dirac plane 
wave wave number, αE is a user picked scale factor, 
ω′ is the frequency of the boundary driven surface 
used in later example solutions and k′φ is an 
approximation for a traveling PW wave number 
used later. The reader is referred to Ref.[3] for 
details on the rationale behind Eqs.(9) and (10a).  

2.3 Governing equations in presence of  
magnetic  potential    Ā′ field alone  (Φ′=0) 

A similar direct coupled approach like used in 
2.2 is used herein. After setting Φ′=0, the Eq.(11a) 

is obtained by first summing -i∂/∂y′ of Eq.(4b) + ∂/
∂x′ of Eq.(4b) and then using Eq.(4a) to eliminate 
the [ ∂Ψ4/∂x′ -i∂Ψ4 /∂y′ ] term in that sum. Equation 
(11b) is obtained by similarly operating on Eq.(4a). 

Magnetic Ā′ potential selection: A vector 
potential is selected given by Eqs.(12a), and 
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substituting it into the 6th of Eqs.(2), gives the 
corresponding Eqs.(12b) for the magnetic field B̄ : 

where x0′ is the offset distance defining the start of 
the magnetic field. The size of Bʹ0 is selected large 
enough to feel the influence of the magnetic field 
on Ψ1(x′,y′,t′), yet small enough to allow the wave 
function solution to continue as a propagating 
wave and is given by the Eq.(13a) relationship, 
where kʹD (given by Eq.(10b)), is the free field 
Dirac plane wave wave number, αB is a user picked 
scale factor, ω′ is the frequency of the boundary 
driven surface used in the example solutions and 
k′A2 is an approximation for the traveling wave 
wave number used later. The reader is referred to 
Ref.[3] for details on the rationale behind Eq.(13a-b). 

2.4 Selection of drive frequency ω and non-
dimensionalization  parameters {T,L}  

 Frequency selection: De Broglie’s photon-to-
particle extension of Planck’s relation between 
particle energy Ep and angular frequency ω (i.e. 
Ep= ℏω), along with the relativistic relation 
between Ep and velocity [4], Ep=mc2/√(1-β2), gives: 

for selecting the particle frequency in terms of the 
particle velocity vp via the speed parameter β=vp/c . 

Non-dimensionalization {T,L} selection: The 
scale of the solution domain is such that the 
numerical size of both time and space variables are 
extremely small in say standard CGS units. 
Equations (4a-b), in the non-dimensional prime 
variables, are valid for any unit consistent values 
of {T,L}, however a convenient choice is to use the 
time period Tp and wave length λD of a propagating 
Dirac Equation plane wave (in the absence of 
magnetic or electric fields). The size of all of the 
primed variables in the FEM models (both in 
model building, solving, and post processing) are 
then nice size numbers. Equation (15) represents 
the SS (steady state) representation of the wave 

functions where the SS exact solution to unprimed 
Eqs.(4a-b), for a plane wave (inclined θinc to the x 
axis, of frequency ω, and traveling in unit vector 

direction , with position vector =x +y  ), is 
given by Eqs.(16-17) Ref.[4] ): 

where A is an arbitrary constant. As an example, 
for a plane wave traveling in the +x direction, set 

 = +  , θinc=0, thus ρˆ=x; whereas for a wave in 
the -x direction, set  = - , θinc=π, thus ρˆ=-x. 

Therefore after selecting driver frequency ω, 
the following scale values for {T,L}are defined by: 

3. Method 

A finite bounded magnetic or electric field is 
embedded in a larger domain where the startup 
zone has a zero magnetic or electric field. This is 
accomplished by applying COMSOL’s “STEP 
functions” (with gradual cubic ∫ shaped rise) to the     
Bʹ0 and  Eʹ0 terms (via A ′ and Φ′) that appear in 
Eqs.(4a-b), Eqs.(5a-b), Eqs.(7a-b), and Eqs.(11a-b). 
The Dirac equation problems are solved in the 
time domain by driving an upfield face of a model 
(that is initially at a zero wave function state) with 
exp(-iω′t′) harmonic loadings, and then track the 
ensuing transient waves that propagate towards the 
downfield end of the model. 

3.1 FEM Boundary Conditions 
3.1.1 FEM Wave Generation Driven Surface: 

transient solutions are generated by driving the 
upfield surfaces with time harmonic loadings of the form: 

where f(t′) is a gradual time increasing  multiplier 
on the harmonic driver and ψn(x′s,y′s) is the wave 
function distribution (from a free field PW or 
CylW ) at surface points {x′s,y′s }. This gradual 
increase is to help minimize any suddenly applied 

⃗n ⃗r ⃗i ⃗j

⃗n ⃗i
⃗n ⃗i
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loading effects. Specifically, the f(t′) is given by 
Eq.(20) with, for example, shaping parameters  of : 

Firstly f(t′) exponentially increases from ε0  to 1.0 
over Nc time cycles ( the [ ] bracket term in first of 
Eqs.(20) ). Using transition term U2(t′), the starting 
value, f(0)= ε0, is made zero by blending f(0)=0 
into f(t′w) with a cubic ∫  shaped curve ending at 
t′=t′w . The Ψ1 input driver, using the Eq.(21) 
parameters, is shown in Fig.(1a) (Ψ4 is a similar 
shape). In Fig.(1b), the FFT of the real part of the 
Ψ1 driver shows a dominant primed frequency at f′ =1.0 . 

            Figure 1. FEM Wave Generation Driver (Ψ1) 

3.1.2 FEM Model Termination Surfaces: 
(i) absorbing B.C. : not used; the computations are 

halted just before the wave meets the outer boundary. 
(ii) zero value B.C. : this is used down field of the 

propagation at the outer boundary points 
{xb′,yb′}of the model, namely Ψn(xb′,yb′,t′) =0 

(iii)  normal gradient B.C. : normal gradient         
•∇Ψn(x′b,y′b,t′)=0, at surface points {xb′,yb′}, 

where  is a unit normal vector to the surface 
and used with Eqs.(7) at wave guide transverse cuts. 

(iv)  periodic B.C. : Ψn(x′,yb′,t)=Ψn(x′,yb′+Y′,t), used 
with Eqs.(4-5) at two wave guide surfaces Y′ apart.  

3.2 FEM Initial Conditions 
The FEM model is started from rest throughout 

the entire spatial domain 𝒟, therefore: 

It is noted that because of the manner Eq.(19) 
is constructed, evaluating it at t′=0 is consistent 
with Eqs.(22) for both Ψn(x′s,y′s,0) and ∂Ψn(x′s,y′s,0)/∂t′. 

3.3 Probability Computation 
The wave functions{Ψ1(x′,y′,t′),Ψ4(x′,y′,t′)} 

can be used to compute the probability PΔA of a 
particle being in a finite area zone,  ΔA′, of space 
for 2-D models. The probability density  ρ (x′,y′,t′) 
is defined as the probability per unit area of the 
particle being at a particular spatial point {x′,y′}, 
and is given  by  Eq.(23) Ref.[4]. The probability 
PΔA , can be computed with Eq.(24), where the  

normalizing factor Λ is set so PΔA ➞1 when  ΔA′ 
➞ A′Total (model total area). We compute only ρ (x′,y′,t′). 

3.4 Model Parameters 
All Dirac equation solutions herein use the 

following parameters in the PDE’s: c= 2.998e10 
cm/sec,  ℏ = h/(2π) = 1.055e-27  erg-sec and the 
particle (electron) mass m = 9.109e-28 grams. 
Since these parameters are fixed from problem to 
problem, the Eq.(14) unprimed drive frequency ω 
is then governed by the remaining particle speed 
parameter β in all models. Electromagnetic 
variables are selected via the parameters αE and αB 
and are specified on a per problem basis.  

4. Electric  Potential Φ  ́  Field Alone  (Ā  ́=0) Results 

The basic building blocks of the Dirac theory 
are freely propagating matter waves such as   
planar ones. Exact validation solutions to these 
wave propagation problems (when the spatial 
varying  Φʹ potential is present) are not generally 

possible, even for simple 1-D propagation. Instead 
COMSOL comparisons to the same problem solved 
by alternate FEM code (e.g. Mathematica™) is made. 

4.1 Bar Plane Wave Guide in Φʹ Field 
4.1.1 {Ψ1,Ψ4} FEM Model Solution Eʹ0 < 0 : 

A W′xL′=4x50 FEM 2-D  bar (see Fig.(2b) inset) 
is driven on the upfield end surface by a uniform load- 

Figure 2. {Ψ1,Ψ4} PW Passes Thru (αΕ = -0.04) Φ  ́Field 

ing ( with A=1) via Eq.(16) into Eq(19) (e.g. Fig.
(1) driver) while using the 3.4 model parameters. 
The downfield surface is terminated with zero (ii)    

⃗n
⃗n
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B.C. and wave guide transverse surfaces use a (iii) 
n̄•∇̄ψn(x′s,y′s)=0 B.C. . The FEM model consist of 
three zones: (a) startup  free field zone where Eʹ0 
=0 ; (b) downfield core zone where electric field 
Eʹ0 = constant; and (c) transition zones where Eʹ0 
gradually increases between the (a↔b) zones. This 
is accomplished by  multiplying Eʹ0 in Eq.(8a) with 
s(x′-xʹo)*Eʹ0 where s is the appropriately shifted 
COMSOL built in step function with cubic ∫ 
shaped transition zones. The inset in Fig.(2b) 
shows the resulting s*Eʹ0  electric field, where dark 
navy blue is the free field zone, dark red is the 
constant central core and the rainbow colors in-
between show the transition zone. A x′o =3 shift 
value is used, which defines the starting point of 
the electric field  ∫  transition . The Eqs.(7a-b) are 
solved in COMSOL using the General-Form PDE 
"time dependent” module. The Fig.(2) solutions are 
at a time snapshot t′=30 and the relevant β 
frequency and αΕ electric field strength parameters 
are labeled on each plot item. Figure(2c) illustrates 
the growth of the probability density ρ with Eʹ0 
turned on vs off. The Figs.(2d-g) show the  growth 
of the individual Ψ1(x′),Ψ4(x′) functions  where an 
increasing wavelength vs x′ is observed and cross 
comparison to a Mathematica FEM solution is good. 
Figure(2a) is a carpet plot of the Fig.(2d) centerline 
plot. The wave length (e.g. using Eq.(10a) evaluated 
@ the mid point x′=15.46 between nulls) is 
approximated with λʹφ ≈ 2π/k′φ = 2.24 as compared 
to the Fig.(2d) 2.24 graphical measurement. 

4.1.2 {Ψ3,Ψ2} FEM Model Solution Eʹ0 < 0 : 
Like the last example except Eqs(5a-b) are solved for 
{Ψ3,Ψ2}, while using Eq.(16) upfield driver with 
substitutions: M➞ -M, A➞R/exp(iθ), Ψ1➞Ψ3 , Ψ4➞Ψ2. 

Figure 3. {Ψ3,Ψ2} PW Passes Thru (αΕ = -0.04) Φ  ́Field 

4.1.3 {Ψ1,Ψ4} FEM Model Solution Eʹ0 > 0 : 
The same Fig.(2) model is solved except here Eʹ0 > 0 

thus the Electric field component is in the  same 
direction as the wave propagation. The Figs.(4d-g) 
show the  growth (reduction here) of the individual 
Ψ1(x′),Ψ4(x′) functions where a decreasing  wavelength 
vs x′ is observed and the cross comparison to 
Mathematica FEM solution is good. Figure (4a) is a 
carpet plot of the Fig.(4d) centerline plot. The wave 

length (e.g. using Eq.(10a) evaluated @ the mid 
point x′=19.42 between nulls) is approximated 
with λʹφ ≈ 2π/k′φ = 0.596 as compared to the Fig.(4d)  
0.590 graphical measurement. 

Figure 4.  PW Passes Thru (αΕ = +0.04) Φʹ Field 

4.2 Disk Cylindrical Wave in Φʹ Field 
A (R′o-R′i)xΘ = (16-4)x360º FEM 2-D  annular 

Figure 5.  CylW Passes Thru (αΕ = -0.04) Φ′ Field 

region (e.g. Fig.(5a)) is driven at the inner surface with 
Eq.(19) while using the Eq(25) Ref.[2] freely 

propagating cylindrical Dirac wave (in {r′,θ} 
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cylindrical coordinates @ r′=R′i ) for the ψn 
amplitudes along with the 3.4 model parameters. 
The gradual Eʹ0 buildup is accomplished by  
multiplying É 0 in Eq.(8a) with s(r′-r′o)*É 0 (e.g. Fig.(5e) ). 

Figures(5a-b) give a “Eʹx off” comparison between 
the Eq.(25) exact analytical SS solution and the 
COMSOL solution of Eqs.(7a-b). Figures(5c-d) 
show the effect of turning on the Eʹx field for two β  
parameters. Figures(6a-d) show the Ψ1,Ψ4 solutions vs x′ 

Figure 6. Ψ1,Ψ4 vs x′ @  y′=0 at Fig.(4) Section  cuts  

for line cuts at y′=0. Agreement is good between 
the SS exact and FEM solutions in Figs.(6a&c). 
Like the Bar, Figs.(6b&d) show the CylW part 
propagating in x′< 0 (Eʹx direction) compresses and the 
part propagating in x′ > 0 (opposite Eʹx direction ) expands.  

4.3 Two Slit Interference Example in Φʹ Field 
A 2-D semi circular disk, of radius R′o=40.0 

Figure 7 Transient Two Slit Transverse Eʹx Field 

FEM model consist of 2 slits of aperture  A′p=0.6 
and separation P′=5.0 that are embedded in a  

baffle as shown in the Fig.(7) “slit detail” inset. 

Figure 8 Transient Two Slit Inline Eʹx Field  

 A (ii) zero value B.C. is used downfield on 
the curved surface. It is assumed that the 
probability of the particle appearing on the 
back slit wall is negligible so the (ii) zero 
value B.C. is also used there. The media consist 

Figure 9  Eʹx Field On vs. Off  Comparisons of ρ  

of an existing Eq.(8a-b) transverse electric field 
bounded upfield by a circular sector of free field in 
vacuo media that just encloses the slits as shown in 
Fig.(7e). Like the  previous example, the electric 
field value s(r′-r′o)*Eʹ0 is turned on gradually by 
multiplying it by the COMSOL ∫  transition step 
function with a radial argument (e.g. Fig.(7e)). 
The slit openings are uniformly driven with the 
same driver used in the 4.1 bar models. The 
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reΨ1(x′,y′,t′) time history evolvement for a 
transverse and inline Eʹx orientation at four time 
snapshots, is shown respectively in Figs.(7a-d) and 
Figs.(8a-d).  The wave appears to halt propagating 
radially between Fig.(8c) and (8d), where stoppage 
alines with the x′ point at which k2′φ  in Eq.(10a) 
turns negative. The probability density ρ, at t′=72 
both with electric field turned on vs off, is  shown in 
Fig.(9a-c). The “Eʹx off” straight spoke interference 
patterns of Fig.(9a) are in contrast to the curved 
spoke interference patterns of Figs.(9b-c). The Fig.
(9d) line plots (at cut planes a-a, b-b, and c-c), nicely 
illustrate the constructive-destructive interference patterns. 

5. Magnetic  Potential Ā  ́ Field Alone  (Φ  ́=0) Results 

The same problems addressed in section 4.1 
and 4.3 are resolved using the Eqs(12a-b) 
magnetic Āʹ field (with Φ′=0). Both the temporal 
surface driver and magnetic field spatial  
distribution are gradually applied as in 4.0. 

5.1 Bar Plane Wave Guide in Āʹ Field 
First order form Eqs.(4a-b) were used to 

generate the Fig.(10) solution (e.g., in contrast to 
Eqs.(11a-b) ), because they integrated over longer 
times before having integration problems (see 6.). 
In this example we have an exact solution for 
validation, where FEM agreement was good as in Figs.
(10d-g). The Ref.[3] SS uncoupled version of Eqs. 

Figure 10.  PW Passes Thru (αB =  -0.04) Āʹ Field 

(11a-b) reduces to the ode d2ψ1/dx′2 + (a-bx′2)ψ1=0 
which was solved symbolically with Mathematica™. 
The exact solution is ψ1(x w′)=PCD[â,-ib̂x′]/PCD(â,
0],where here PCD[_,_] is the two argument 
“ParabolicCylinderD” function (as defined in 
Mathematica™) where â=(-a-√b)/(2√b); b̂=√2∜b. 
The wave length (e.g. using Eq.(13b) evaluated @ 

the mid point x′=25.02 between nulls) is 
approximated with λʹΑ ≈ 2π/k′A = 1.34 as compared 
to the Fig.(10d) 1.33 graphical measurement. 

5.2 Two Slit Interference Example in Āʹ Field 
Second order form Eqs.(11a-b) were used to 

generate the Fig(11) solution. The Fig.(11b) interference 

Figure 11.  Transient Two Slit Āʹ Field 

spokes are curved by the Bʹz magnetic “field on” in 
contrast to the Fig.(11a) “field off" straight ones. The 
Fig.(11c) interference spokes disappear with one slit closed. 

6. Concluding Remarks 

An uncoupled, better converging second order 
PDE version of the Magnetic field alone Eqs.(11a-
b) is obtained by eliminating the ∂Ψ4′/∂t′ in Eq.
(11a) with Eq.(4b) and eliminating the ∂Ψ1′/∂t′ in 
Eq.(11b) with Eq.(4a). Based on preliminary 
computations with these reduced PDE’s (using 
alternate FEM code Mathematica™), improved 
stability and convergence characteristics over longer 
time integration ranges were experienced (e.g. Fig.
(10d-g) was reproduced. The same improved 
performance using COMSOL is anticipated. 
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