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Abstract 

 

Coriolis Vibratory Gyroscopes (CVGs) are high performance devices used to measure rotation rates with very high 

accuracy. The vibratory element, called the resonator, is designed to possess a pair of orthogonal degenerate modes 

with very high Quality factors (Q-factors). The frequencies associated with these modes are required to be far 

separated from those of other modes. In this work, the thickness of a CVG with a disc resonator is optimized to 

fulfill these requirements. Modal analysis is performed to locate regimes of thicknesses so as to avoid cross coupling 

of modes. Further thermo elastic damping (TED) and anchor losses are estimated to predict the Q-fator of the modes 

of interest. The basic configuration is arrived considering sufficient separation of the functional mode from other 

modes. The TED based Q-factor is improved by an order through proper selection of beam thickness. The TED is 

found highly sensitive to thin conductive film coatings. Sensitivity of anchor loss to the geometry is also studied 

using the perfectly matched layer concept in Comsol. 

 

Introduction 

 

Gyroscopes are instruments which are used to 

measure angular motion. Their traditional market is 

for navigation, guidance and stabilization of space 

applications and military systems. In recent years, 

with the advancement of meso- and micro-electro 

mechanical systems, there has been an increasing 

demand to manufacture less expensive gyroscopes 

and accelerometers while maintaining a good 

performance[1]. In recent years, a number of 

practical gyros have been conceived in which the 

vibrations of a  a flexible structure such as a rod, 

beam or hemisphere,is utlized to sense rotation rates. 

Such gyros utlize the vibrations induced by Coriolis 

force to sense rotations and hence come under the 

category of Coriolis Vibratory Gyroscopes (CVGs). 

These devices overcome a major problem of rotating-

wheel gyros: the need for bearings or the like to 

permit high-speed rotation of the gyro wheel relative 

to the case. The absence of bearings in vibrating-

member gyros eliminates wear and errors associated 

with wear that are inherent in rotating wheel gyros. 

The absence of bearing friction in vibrating member 

gyros also eliminates the principal cause of power 

consumption. Vibrating-member gyros have other 

advantages. They are capable of accepting virtually 

unlimited angular velocity inputs without design 

compromises that reduce the accuracy of rotating-

wheel gyros. Thus, they are ideally suited to 

application in strapdown inertial navigation systems. 

Moreover, vibrating-member gyros, in principle, are 

much less sensitive to linear accelerations than 

rotatingwheel gyros and are thus better suited to high 

acceleration environments than the latter. But, as with 

all instruments, the vibrating-member gyro is not 

without practical problems. In particular, an 

instrument that uses Foucault's principle requires an 

ideal vibrating member; one in which the amplitude 

of oscillation is not reduced by energy losses and in 

which there is complete dynamic symmetry so that 

the plane of oscillation precesses at a rate determined 

only by the angular rotation of the instrument. No 

practical instrument will be perfectly symmetrical 

and the mechanical energy of vibration will dissipate 

unless a drive system is provided to sustain the 

oscillation[2]. 

The disk resonator gyroscope (DRG) is a meso-scale, 

high performance, compact and planar new 

generation Coriolis vibratory gyroscope which is 

suitable for space applications. Angular rate 

measurement utilizes the precession of a pair of 

degenerate modes of a perfectly balanced 

(axisymmetric) DRG resonator under the influence of 

the Coriolis force. This pair of operating modes is 

usually referred as the n=2 pair of modes and each 

one of these is spatially separated from the other by 

an angle of 45 degrees. This paper discusses how the 

thickness of the quartz resonator is finalized, based 

on results of simulations performed on COMSOL 

5.3. 

 

Working principle  
 

A body of mass 𝑚 translating with a velocity �⃗�, when 

rotated at an angular rate Ω⃗⃗⃗ experiences a force equal 

to 2𝑚Ω⃗⃗⃗ × �⃗�. This force is in a direction 

perpendicular to both the axis of rotation and the 

direction of translation.  In other words, a point mass 

(constrained by springs  in both X and Y directions) 



which is set to vibrate in the X direction when rotated 

about the Z axis experiences vibrations in the Y 

direction. For a constant rotation rate, the vibrations 

forced in the X axis therefore gets transferred to the 

Y axis at the same frequency and the point mass 

traces a pattern in time which is the vector sum of the 

vibrations in the X and Y directions. For an observer 

rotating along with the axis (at the same rotation 

rate), the motion in the Y direction is a measure of 

the rotation rate. It is advantageous for CVG 

resonators to have equal stiffnesses in the X (the 

drive) and the Y (the sense) directions so that 

resonant oscillations in one direction when coupled 

due to Coriolis force to the other, resonates the other 

second mode as well.  For this purpose a pair of 

degenerate modes (with equal frequencies but 

spatially orthogonal) are selected. The disc resonator 

is one such structure which has a pair of degenerate 

modes. Another requirement is that the resonator 

damping levels be as low as possible. This ensures a 

high quality factor (Q-factor) and a large amplitude 

for resonant vibrations. The large amplitude 

vibrations in the linear zone imparts more sensitivity 

to the gyroscope.  

 

 
Figure 1: The three dimensional model of the DRG 

resonator 

 

Modeling and Analysis method 
 

The general modeling procedure undertaken for each 

of the studies performed in this work is as follows. 

The two dimensional sectional view of the DRG 

resonator was initially prepared in AutoCAD. The 

sketch was imported into COMSOL and extruded in 

the thickness direction to create the solid model. 

Once the solid model was created the material 

properties were assigned. Thereafter, the required 

loads were applied and the boundary conditions were 

esatbilshed. The solid model was meshed and solved, 

and the required results were plotted. The above 

described generalized procedure was employed for 

each of the following studies. Specific details are 

described in the corresponding sections.  

 

A three dimensional view of the DRG is presented in 

Figure 1. The overall diameter of the resonator is 

approximately 20mm. The following material 

properties were used. 

 

Material Young's 

modulus 

Poisson's 

ratio 

Density 

Quartz 72 GPa 0.17 2203 

Aluminum 70 GPa 0.30 2700 

Gold 79 GPa 0.42 1930 

 Table 1: Material properties 

 

Natural frequency and mode shapes 
 

The behavior of every structure in response to 

periodic dynamic loads can be understood by 

studying its natural frequencies and the associated 

mode shapes. The DRG resonator is designed to 

operate under sinusoidal electrostatic forcing at one 

of its natural frequencies. At this frequency it is 

required that only the mode of interest is excited. 

Therefore the natural frequencies of all the other 

modes need to be well separated from that of the 

working mode. The most common operating mode 

for the DRG resonator is the n=2 in-plane mode. This 

mode exists as a degenerate pair, the mode shape of 

each of which has its anti nodal axis spatially 

separated from that of the other by 45 degrees. The 

mode shapes of the n=2 mode is presented in Figure 

2.  Note that, as evident in the elevation views 

presented in Figure 2, these mode shapes are purely 

in-plane. 

 

The natural frequencies and the mode shapes for one 

particular thickness value are extracted by conducting 

a modal analysis using an Eigenfrequency study. The 

study is repeated for a range of thickness values using 

the parametric sweep feature. The natural frequencies 

obtained from the Eigenfrequency study is plotted 

against the extrusion thickness to obtain a locus and 

is presented in figure 3. The red rectangular box 

marks the region around the n=2 mode. The 

frequencies around this thickness is magnified in 

figure 4(a) and figure 4(b). It is interesting to note 

that the frequency of the n=2 rises very gradually as 

the thickness is increased. Several frequency 

crossings are observed where the locus of one 

frequency interferes with the other. These thickness 

values are avoided to prevent coupling of the 

crossing modes. A representative plot of the coupled 

mode shape is presented in figure 5. Coupling 

destroys the perfect in-plane vibratory nature of the 

mode and brings in undesirable out-of-plane bending. 



 

 
Figure 2: The (n=2) operating modes of a DRG 

resonator 

 

From the loci presented in Figure 3 and Figure 4, 

several thickness regimes are identified within which 

coupling of modes can be avoided. These regimes are 

marked R1 to R5. From these regimes the following 

thicknesses are selected due to feasibility of 

manufacturing: 0.35mm, 0.52mm,0.75mm and 

1.05mm. We take forward only these thicknesses for 

further Q-factor related investigation.  

 

Thermo elastic damping 

 
The mechanism of thermo elastic damping was first 

explained by Zener many decades ago [3]. He 

indicated that the phenomenon is induced by the 

irreversible heat dissipation during the coupling of 

heat transfer and strain rate in an oscillating system. 

 
Figure 3: Loci of natural frequencies plotted against the 

thickness of the resonator 

 

 

 
 

Figure 4: Magnified view of the loci of frequencies, 

falling within the region marked by the red rectangle of 

(a) Figure 3 and (b) Figure 4a. 

 

 
Figure 5: Effect of coupling on the n=2 mode shape. 

 

When a beam is bent, one side of the beam is in 

tension and the other side is in compression. The side 



in compression gets slightly warmer and the side in 

tension gets slightly cooler due to the coupled nature 

of the thermal and mechanical domains. A 

temperature gradient is formed across the beam 

giving rise to heat flow for nonzero thermal 

conductivity and this heat flow is an irrecoverable 

energy loss that limits the quality factor of the beam.  

 

The general heat conduction equation with heat 

generation is as follows.  

k∇2T = ρCP

∂T

∂t


EαT0

1-2ϑ
∇.

∂u

∂t
 

k is the thermal conductivity, T is the temperature, ρ 

is the density, CP is the specific heat capacity, E is 

the Young’s modulus, α is the coefficient of thermal 

expansion, T0 is the absolute equilibrium 

temperature, ϑ is the Poisson’s ratio, u is the general 

displacement. The general equation of motion with 

additional thermal strain due to thermo elastic 

coupling is as follows: 

ρ
∂

2
u

∂t2
=μ∇2u+(μ + λ)∇(∇.u)

Eα

1-2ϑ
∇T 

where μ and λ are the Lame’s parameters. The above 

equations can be solved for complex eigen values, 

which will represent the dissipation. Here we use 

Comsol to estimate the Q-factors associated with 

resonators of the thicknesses selected in the previous 

section. 

Thickness 

(mm) 

Frequency of the 

n=2 mode (Hz) 

Quality 

factor 

0.35 16400 1.07E+08 

0.52 16418 1.03E+08 

0.75 16446 9.84E+07 

1.05 16477 9.37E+07 

Table 2: Frequencies and Quality factors for the 

n=2 mode at various thicknesses 

 

It is observed that the Quality factor decreases with 

an increase in resonator thickness. Out of the four 

thickness studied in this section, the t=0.35mm case 

exhibited greatest Q-factor. Therefore for this 

thickness parameter, the effect of thin film coating is 

studied next. 

 

DRG sensors are generally actuated electro-statically. 

The Quartz resonator is coated with a thin gold film 

so as to make it electrically conductive to facilitate 

actuation. However the gold coating reduces the Q-

factor of the resonator. In this section we study the 

effect of a gold coating on Q-factor. We make use of 

the axisymmetric nature of the resonator section and 

therefore model one quadrant of the resonator and 

perform the study. The thickness of the coating was 

chosen to be 500nm. On analysis it was observed that 

the Q-factor reduced from 1.07e8 to 4e5. 

 

 
Figure 6: The model of a coated resonator. 

 

 

Anchor loss 
 

Yet another mechanism for Q-factor reduction in 

high Q systems is the energy losses at the attachment 

points. The cyclic forces and moments that resonator 

oscillation exerts on its anchors can excite shear and 

normal stress waves that propagate into the substrate; 

part of energy of these stress waves is absorbed by 

the anchors and the substrate and is dissipated. This 

phenomenon is referred to as anchor damping.  

For beam resonators with the thickness much smaller 

than the transverse elastic wavelength the support 

loss due to moment is negligible compared to shear 

(as the radiation efficiency of the normal force is 

reduced since two halves of radiation source cancel 

each other). The shear force at a beam anchor point is 

evaluated in reference [4] based on the beam 

equation of resonant motion. This acts as the source 

of elastic waves in the support structure. Then, 2D 

elastic wave equation is used to generate closed form 

solution for anchor loss for clamped-free beam. The 

equation of motion of the in-plane flexural vibration 

of the beam resonator is as follows: 

∂4y

∂x4  + 
ρS

EI

∂2y

∂t2 = 0 

where I and S are the moment of inertia and cross-

section area of beam respectively. The stored flexural 

vibration energy for n
th

 resonant mode is as follows: 

Wn =
1

8
ρSLωn

2Un
2 

where L is the length of the beam and U is the 

vibration amplitude. The vibrating shear force 

exerted by the resonator on its support is as follows: 



Γn = EIUn [
πβn

L
]

3

χn 

where βn is mode constant and χn is mode shape 

factor. This shear force excites elastic waves 

propagating into the support which carries energy 

away from the resonator and therefore reduces the Q-

factor. 

Anchor damping is expected to be approximately 

constant over temperature unlike thermo elastic 

damping. Often, this temperature independent 

characteristic of anchor damping is utilized to 

identify and determine the contribution of anchor 

damping in the measurements [5]. 

The Quality factor of a resonator considering the 

losses due to anchoring alone is investigated using 

Perfectly matched layers (PMLs). A PML is a finite 

domain that is attached to the outer boundary of a 

(finite element) model which contains the system of 

interest - in our case a resonator and part of the 

substrate (with possibly subsurface scatterers). The 

PML is a continuum domain with moduli devised in a 

fashion such that the mechanical impedance between 

the PML and the model is perfectly matched. This 

essentially eliminates spurious reflections from the 

artificial interface. The PML is finite in extent and 

thus has an outer boundary. The presence of an outer 

boundary requires the PML to damp the out-going 

waves before they reflect and pollute the computation 

[6]. 

 
Figure 7: Variation of the estimated Quality factor with 

the thickness of the Perfectly matched layer for 

different resonator thicknesses. 

 

In the work presented here, we obtain the Q-factors 

of resonators for the four thickness values selected in 

Section 4. For each of these four resonator 

thicknesses, the PML thicknesses are varied to find 

the optimum value (that which gives maximum Q-

factor) and the associated Q-factors. Finally the 

thickness for which the obtained Q-factor is 

maximum, is selected. Figure 7 presents the variation 

of Quality factor as a function of the PML thickness 

for different resonator thicknesses. It is observed that 

for an analysis performed with low PML thickness 

(below 2.5 mm), thicker resonators exhibit higher Q-

factors. However for PML thicknesses above 3mm, 

thinner resonators show higher Q-factors. The exact 

reason behind this trend needs further investigation. 

It is concluded that a resonator with thickness t=3mm 

shows maximum Q-factor and therefore is superior 

from an anchor loss perspective. 

 

Summary 
 

The aim of this work is to optimize the thickness of a 

disk resonator for a CVG by separating the functional 

mode from the other modes as well as maximizing Q-

factor. Four thickness regimes where the frequency 

of the operating (n=2) mode is well separated from 

the frequencies of the other modes are identified. For 

each of these regimes, Q-factor estimation based on 

thermo elastic damping is performed. The effect of a 

conductive coating on the Q-factor is also 

investigated. It is found that the coating reduces the 

Q-factor 1000 times. The PML concept is Comsol is 

used for anchor loss simulation. Anchor loss 

estimation is done for different thicknesses. Finally 

taking into account the requirements of isolation of 

the operating mode's frequency and the maximization 

of Q-factor, an optimized geometry with a conductive 

coating layer is arrived. 

 

References 
 

1. C. Langmaid, "Vibrating Strucutre Gyroscopes"; 

Sensor Review. pp 14-17; 16, 1 (1996). 

2. B. Friedland and M. F. Hutton, "Theory and Error 

Analysis of Vibrating-Member Gyroscope"; IEEE 

Transactions of Automatic Control; 23, 4 (1978). 

3. C. Zener, "Internal Friction in Solids I: Theory of 

Internal Friction in Reeds"; Physical Review; 52, 

(1937). 

4. Z. Hao, A. Erbil, and F. Ayazi, "An analytical 

model for support loss in micromachined beam 

resonators with in-plane flexural vibrations"; Sens. 

Actuators A, Phys.; 109, 1–2, (2003). 

5. S. Ghaffari, E. J. Ng, C. H. Ahn, Y. Yang, S. 

Wang, V. A. Hong, and T. W. Kenny, "Accurate 

Modeling of Quality Factor Behavior of Complex 

Silicon MEMS Resonators"; Journal of 

Microelectromechanical Systems; 24, 2, (2015). 

6.  D. S. Bindel, E. Quevy, T. Koyama, S. Govindjee, 

J. W. Demmel, and R. T. Howe, "Anchor Loss 

Simulation in Resonators", IEEE. 


