COMSOL CONFERENCE 2018 LAUSANNE

22-24 October 2018

Chewing mechanisms in the elderly investigated using Finite Element Modelling (FEM) for two soft cereal foods

Assad-Bustillos M.^{1,2,3}, Guessasma, S.¹, Reguerre A.L.¹, Della-Valle G.¹

- 1. INRA Biopolymers Interactions and Assemblies (BIA), France
- 2. INRA Center for Taste and Feeding Behavior (CSGA), France
- 3. CERELAB®, France

Chewing: a major transformation process

- Complex mechanisms: teeth, tongue, saliva involved!
- De-structuring , particle size reduction
- From mechanical point of view:
- Compressive forces
- Deformation, damage → failure

?

Understand
chewing
mechanisms
as a tool to
develop
optimized
foods

Chewing

- In-mouth processing& transformation
- First step of the eating& digestion process
- Flavor & aroma release
- Perception, sensory pleasure

Importance of the mechanical behavior of the food!

Soft cereal foods

- Cellular solids
- Ductile behavior
- Structure properties
 - Stress vs Strain response

Aim of the study & methodology

Aim: Predict the mechanical behavior of two ductile cereal foods under compression at high strain levels using FEM

Experimental data acquisition

Model Implementation

Model Validation

- Sponge-cake & Brioche
- Mechanical behavior: uniaxial compression
- 3D Structure:X-Ray tomography(ESRF)

- COMSOL® Multiphysics v. 5.3a
- Structural mechanics module
- Geometry building Meshing
- Constitutive laws + stiffening term

(Guessasma & Nouri, 2015)

Calculation

- Compare model vs. experimental results
- Optimization:
 Parametric sweep
 to find best model
 parameters

Experimental data acquisition

Structure (X-Ray Tomography)

Brioche

Sponge-Cake (SC)

Mechanical test

Sample size

Results: Stress vs Strain response

Model Implementation

Geometry building

- Based on realistic dimensions
- Two types of geometries: cylinder and unit cell
- Cylinder is used to approach the large strain behavior
- Unit cell takes porosity into account but is restrained to linear domain due to contact non-linearity

- Tetrahedral elements
- Number of elements: 2557 domain elements and 508 boundary elements

Homogenized material

Unit cell

Boundary conditions

Boundary loading & fixed constraint in z direction

Constitutive laws

Elasticity + Stiffening term (Guessasma & Nouri, 2015)

$$E = E_0 + E_D \times \left(\frac{1 - \exp(\frac{\varepsilon}{100})}{1 - \exp(1)}\right)^d$$

Plasticity (Voce's hardening rule)

$$\sigma_Y = \sigma_{Y0} + \sigma_S (1 - exp[-\beta \varepsilon_p])$$

Where:

 E_0 = Young modulus σ_{y0} = Yield stress E_D = Densification

modulus

d= Stiffening

coefficient

 σ_s = Saturation flow

stress

 β = Saturation exponent

 ε_p =Plasticity Strain

Calculation Stationary solver: ϵ auxiliary sweep 1 to 89 w/ step of 2

Model Validation

Parametric sweep: Model parameters Sponge-cake

(first, step, end)		Best value
E ₀	-	5 kPa
E _D	(0.5,0.5,5)	0.5 MPa
d	(0,1,10)	4

Brioche

(first, step, end)		Best value
E _o	-	20 kPa
E _D	(1,1,10)	4 MPa
d	(0,1,10)	8
β	(0, 5x10 ⁻⁴ ,	1.5x10 ⁻²
	1x10 ⁻²)	
σ_{y0}	<u>-</u>	3 kPa
$\sigma_{\rm s}$	(1,1,20)	14 MPa

Homogenized vs. Experimental

Model - Experimental

Unit cell at 10% Strain Stress field in z component

Cell-wall bending is the leading deformation mechanism

Conclusion & Perspectives

For the two studied food products:

- Use of the stiffening term was an effective way to derive the compression behavior up to the densification stage.
- The models remarkably captured all the deformation stages with a limited number of mechanical parameters.

What is next?

- Modelling of mechanical response of the two foods from the 3D cellular structure
- Include physiology criteria
- Take account for viscous effects

✓ First step towards a more accurate description of the mechanical and structural changes that occur during chewing in cereal soft foods.

Thank you for your attention!

Any questions?