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Introduction 

 

Numerical homogenization of fiber reinforced 

composites has become a valuable design tool that 

utilizes the power of modern Finite Element Analysis 

(FEA). Piezoelectric materials are used extensively as 

sensors and actuators. Piezoelectric composites are 

more desirable than the homogeneous layers since 

they relatively overcome the brittleness disadvantage 

of piezoelectric material and can be tailored for a 

better performance in specific applications. In this 

work, a visco-elastic matrix is reinforced with 

piezoelectric fibers and the overall electrovisco- 

elastic homogenized properties are computed using a 

Representative Volume Element (RVE). The elastic, 

piezoelectric and dielectric constants will be extracted 

by applying the proper loading and periodic boundary 

conditions on the RVE. Since the viscoelastic modulus 

is time (and frequency) dependent, the overall 

homogenized properties will also be time and 

frequency dependent. The frequency dependent 

properties are determined by frequency response 

studies for a combination of loading and boundary 

conditions. A parametric analysis will be performed to 

study the effect of frequency and piezoelectric fiber 

volume fraction of the homogenized properties. The 

problem is covered by the MEMS module, which has 

the piezoelectric effect and solved in the frequency 

domain. The main advantage of COMSOL® will be 

the flexibility to input frequency-dependent material 

properties and the direct calculation of the 

homogenized complex material coefficients. The 

results will set a new benchmark for validating new 

concepts in the field of piezoelectric composites.  

 

Theory  

 

Piezoelectric fiber composites (PFC) were developed 

to increase the conformability of piezocomposites. 

The unique coupling property of piezoceramics is 

widely used in developing the electromechanical 

actuators and sensors [1]. Though bulk piezoceramic 

materials are favored for sensing and actuation, due to 

their advantages like, large actuation force, short 

response time and insensitive to magnetic fields, they 

are often limited by their weight and brittle 

characteristics. To overcome these limitations, 

piezocomposites have been developed by embedding 

brittle piezoceramic fibers in a relatively ductile 

polymer matrix. For linear homogeneous piezoelectric 

materials, the constitutive equations that relate the 

electric and elastic fields are given by: 
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Where T, S, E and D are the stress, strain, electric field 

and the electric displacement respectively. C, e and Ɛ 

are the elastic stiffness tensor, piezoelectric tensor and 

the dielectric tensor respectively. 

This work deals with the viscoelectroelastic behavior 

of polymer piezoelectric composites. This kind of 

composites shows frequency dependent properties. 

The frequency dependent constitutive model of 

viscoelectroelastic homogeneous material is given by: 
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The constitutive equation of the piezocomposites that 

depends on frequency is given below 
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Numerical Model  

The numerical model was developed by COMSOL FE 

package and compared against existing results from 

the literature. The elastic properties of the matrix are 

replaced by viscoelastic complex moduli and the 

homogenized coefficients are calculated using the 

volume average method (steps for evaluating the 

effective coefficients are given below). Composite 

materials can be envisaged as a periodical array of 

unit-cells. The elastic matrix of PZT fiber reinforced 

with polymer matrix is given in equation (1). In order 

to represent the continuous physical body of the 

arranged unit-cells, continuity conditions must be 

satisfied at the boundaries of the adjacent unit cells. 

The first condition is that the displacements must be 
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continuous, i.e., after deformation the adjacent unit 

cells cannot be separated or overlapped at the 

boundaries. The second condition implies that the 

traction distributions at the opposite parallel 

boundaries of a unit cell must be the same. To ensure 

the above said conditions, periodic boundary 

conditions (PBC) are imposed on the unit-cells. A unit 

cell with PZT fiber reinforced in elastic matrix is taken 

for analysis (the geometry is given in Figure.1).  

 

 
Figure.1 Geometry of representative volume element. 

 The unit-cell configuration is considered by assuming 

that the fibers are continuous and uniformly embedded 

in a matrix along with periodicity in all directions. The 

macroscopic average fields such as stress, strain, the 

electric field and electric displacement are calculated 

based on the volume average method as shown below 
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Using the FEM, the average values can be calculated  

By using equation 5. The effective electromechanical 

constants of PZT fiber reinforced in an elastic matrix 

are evaluated by imposing the periodic boundary 

conditions on the RVE [2]. Note that A± denote 

opposite faces normal to the 1 direction at both ends 

of the RVE, while B± and C± are those normal to the 

2 and 3 directions, respectively. 

 

 1

1

N
e e

ij

e
ij N

e

e

S V

S

V










, 1

1

N
e e

ij

e
ij

N
e

e

T V

T

V










 

                                                                                                                                 

  1

1

N
e e

ij

e
ij

N
e

e

E V

E

V










, 1

1

N
e e

ij

e
ij

N
e

e

D V

D

V










                   (5)                     

For example, to obtain the effective coefficientĈ11, the 

displacement in 2 and 3 directions is constrained in B± 

and C± surfaces, respectively. A unit normal strain is 

applied at face A+ while face A- is constrained. Also, 

zero electric potential difference across the electrodes 

is maintained. The effective elastic constants Ĉ11, Ĉ22 

and Ĉ33 are obtained by applying the boundary 

conditions in such a way that, except strain in direction 

1 (S1) all other independent fields are equal to zero. 

The same can be achieved by applying the constraint 

equations, where a unit macro strain is applied on the 

opposite surfaces of A± and the displacement in y and 

z directions are constrained in B± and C± surfaces, 

respectively. A zero-voltage difference across the 

electrodes and boundary surfaces are applied to obtain 

short circuit condition (E = 0). The induced stresses 

and electric displacements for the applied strain are 

calculated using the linear constitutive equation. The 

effective coefficients can be obtained by applying the 

boundary conditions in the unit cell in such a way that, 

apart from one component of the strain all other 

components can be made equal to zero. Some of the 

equations are given below for simple calculation of 

effective coefficients with appropriate boundary 

conditions.To evaluate the effective coupling and 

electrical coefficients, a potential difference is applied 

across the electrodes such a way that a unit value of 

the electric field is generated along the direction (3). 

The macroscopic strain conditions are applied on the 

opposite surfaces (A±, B± and C±) such a way that the 

strains in all directions are approximately zero. For 

instance, the next equation shows sample calculations 

of constants 
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For practical calculations of the elastic coefficients, a 

unit strain is applied, which makes the elastic 

coefficient equal to the induced stress. In COMSOL 

the volume averaged stresses are directly obtained, 

which makes the calculation process efficient. 

 

Simulation Results  

 

The PZT-5A (material property shown in Table 1) 

inclusions embedded in a viscoelastic matrix LaRC-SI 

(material property taken from literature [3] is shown in 

Table 2) is modelled using COMSOL.  

 

Property PZT-5A 

C11 (GPa) 120.3 

C12 (GPa) 75.2 

C13 (GPa) 75.1 

C33 (GPa) 11.1 

C44 (GPa) 2.11 

e31 (C/m2) -5.4 

e33 (C/m2) 15.8 

e15 (C/m2) 12.3 

Ɛ11 919.1 

Ɛ33 826.6 

                                                

Table 1. Material properties of PZT-5A. 

 

 

Property LaRC-SI 

D0 (GPa-1) 0.375 

D1 (GPa-1 h-1) 0.051606 

n 0.4130 

γo 0.367 

 

Table 2. Material properties of LaRC-SI. 

 

The used viscoelastic material LaRC-SI is modeled 

using the compliance of the matrix given as follows. 
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where D0 is the initial elastic compliance, and D1 and 

n are experimentally determined parameters and s=iω. 

with ω denoting the frequency. The Young modulus 

( )E s  is taken as the inverse of 0 ( )M s . The 

resulting new composite will have a viscopiezoelectric 

behavior. In Figs. 2(a and b) and 3(a and b), the storage 

and loss part of the effective elastic constants and 

piezoelectric modulus C11 and e31 are presented with 

respect to the different volume fraction and the 

frequency ω (1/h). The effective coefficients obtained 

in the frequency domain are complex and frequency 

dependent. The frequency strongly affects the 

modulus of the material. 
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Figure 2(a). Effective storage elastic modulus (C11) for a viscoelectroelastic composite 

 

 
 

 

 

Figure 2(b). Effective loss elastic modulus (C11) for a viscoelectroelastic composite 

 

 

 

 

 

Figure 3(a). Effective storage piezoelectric modulus (e31) for a viscoelectroelastic composite 
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Figure 3(b). Effective loss piezoelectric modulus (e31) for a viscoelectroelastic composite 

 

 

 

 

 

 
                       

  

 

Figure.4(a) and (b). Unit cell deformations to obtain C11 and e31 coefficients 

 

 

 

Conclusions 

 

The frequency dependent material properties under 

different boundary conditions for different volume 

fractions are obtained. The results show that the 

material properties are strongly depend on the applied 

frequency. The direct calculation of the homogenized 

complex material coefficients is done using Comsol, 

which saved more time and made the whole process 

easier. 
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