

Using Artificial Intelligence (AI) within COMSOL Multiphysics[®] to Create Machine Learning Tools

COMSOL European Conference: Florence, 22-24 October 2024

F. Viry¹, M. Sturma², P. Namy¹, B. Barbet²

¹: SIMTEC, 5 rue Felix Poulat 38000 Grenoble France

²: MARKEM-IMAJE, Bourg-lès-Valence, France

Property of SIMTEC - All rights reserved

that predicts, optimizes and innovates

Outline

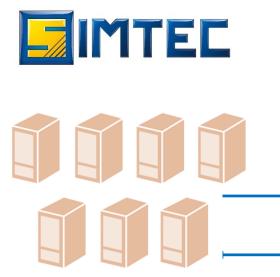
- I. Background Motivations Objectives
- II. Modelling and Numerical Model
- III. Main Results
- IV. Conclusions Perspectives

that predicts, optimizes and innovates

Before starting, who we are... www.simtecsolution.fr

SIMTEC : Fundamentals

- French Numerical modelling consultancy
- Leader in France of the COMSOL Certified Consultants, key partner worldwide
- 9 members Eng.D. + Ph.D.
- Main partners:
 - big international companies
 - laboratories
- Involved in the Research projects like EU FP (SHARK, SisAl)/ PhD supervision



that predicts, optimizes and innovates

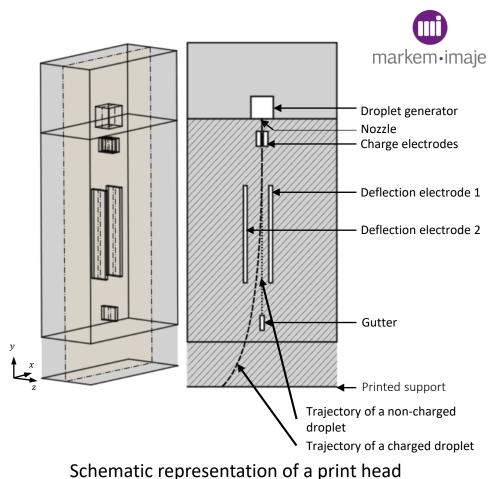
I. Background – Motivations – Objectives

At SIMTEC,

Creation of dozen of COMSOL model every year

Worldwide,

A big boom in Al assisted processes (chatgpt, deepl...)


EIMTEC

Numerical modeling

that predicts, optimizes and innovates

I. Background – Motivations – Objectives

- Collaboration with MARKEM-IMAJE
- Continuous Inkjet printing (CIJ) : high speed printing for marking and coding
- How does CIJ work?
 - ➢ High speed emission of droplets (≈ 100 kHz at ≈ 20 m/s)
 - > Charge of particular droplets ($\approx 1 \text{ pC}$)
 - > Deflection of charged droplets in an electric field ($\approx 1 \text{ kV/mm}$)
 - Impact of charged droplets on the printed support
- Goal: maximizing printing quality
- Printing quality depends on:
 - Breakoff quality at generation
 - Deflection
 - Interactions during flight

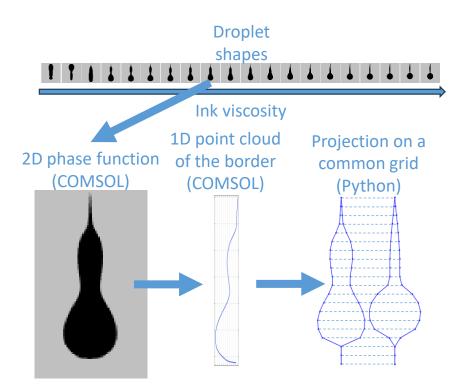
that predicts, optimizes and innovates

II. Modelling and Numerical Model

Tools

 \rightarrow Data generation/collection

→ Data treatments
 → Training models



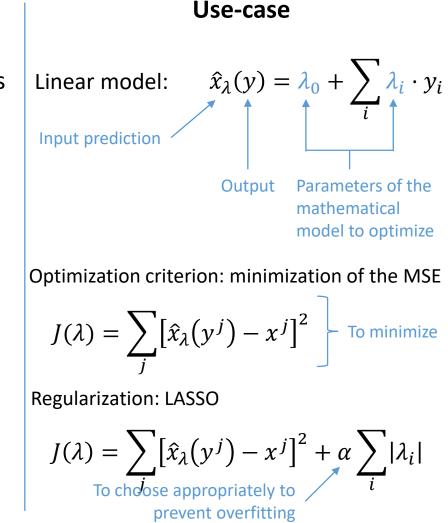
that predicts, optimizes and innovates

II. Modelling and Numerical Model

Collecting Data

- 1. Choose a set input values (design of experiment)
- \rightarrow Build the "input matrix" in the Python code
- 2. Perform one simulation per input value (COMSOL)
- 3. For each simulation: export the output as a TXT file (COMSOL)
- Project outputs into a common subspace (COMSOL or Python)
- \rightarrow Build the "output matrix" in the Python code

Use-case

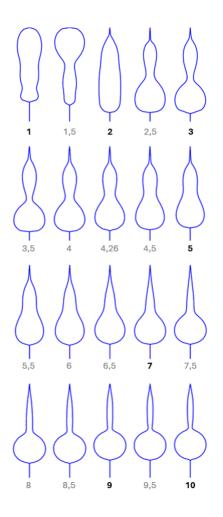

that predicts, optimizes and innovates

II. Modelling and Numerical Model

Training a Model (Python)

 Choose a mathematical model to express the viscosity according the radius of the droplet

- Choose an optimization criterion to train the model
- 3. Regularization to avoid overfitting



that predicts, optimizes and innovates

III. Main Results

Dataset: droplets shapes at break simulated for multiple values of viscosities (in cP)

that predicts, optimizes and innovates

III. Main Results

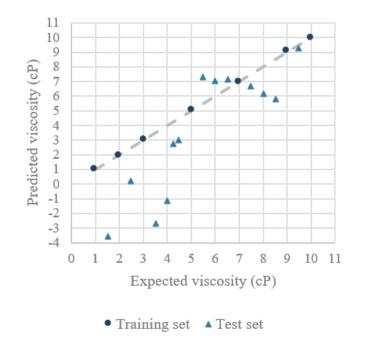
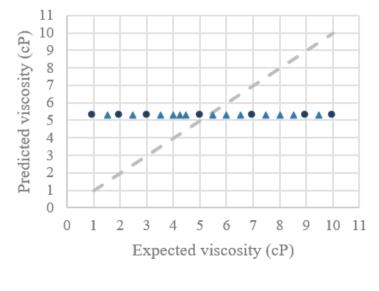
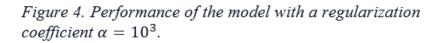
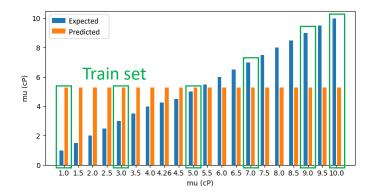



Figure 2. Performance of the model with a regularization coefficient $\alpha = 10^{-9}$.



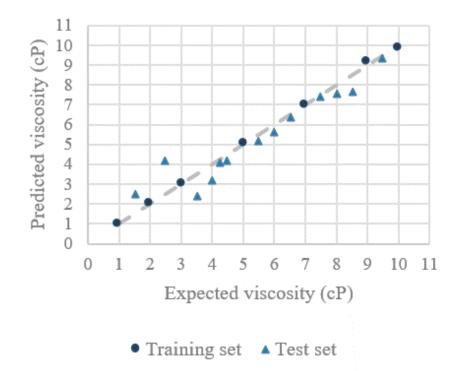
- Good fit on *train set*
- Bad predictions on *test set*
- \rightarrow Overfitting X

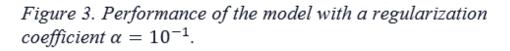


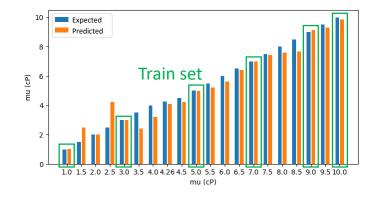

that predicts, optimizes and innovates

III. Main Results

• Training set A Test set




- Bad fit on *train set*
- Bad predictions on *test set*
- → Underfitting X



that predicts, optimizes and innovates

III. Main Results

- Good fit on *train set*
- Good predictions on test set
- \rightarrow Good model \checkmark

that predicts, optimizes and innovates

IV. Conclusions - Perspectives

- Interest of Machine Learning methods:
 - \succ Minimize the simulation computational cost \rightarrow Building **Surrogate Models**
 - Retrieve simulation inputs providing a given output -> Solving Inverse
 Problems
- What we have done:
 - 1. Extract inputs/outputs data from COMSOL
 - 2. Solve an inverse problem using Supervised Machine Learning tools in Python
- Flexibility of COMSOL is of great help to do so ③
- \rightarrow Coupling COMSOL with Machine Learning tools is feasible!

that predicts, optimizes and innovates

To finish...

Thank you!

Q&A?

Our question: Who would like to try on your models? 🙂

Patrick NAMY SIMTEC (+33) (0)9 53 51 45 60 patrick.namy@simtecsolution.fr

COMSOL CONFERENCE 2024 FLORENCE