

PIC simulation of a 2.45 GHz ECR ion source using COMSOL tensorial permittivity RF

^{capability}

<u>Lorenzo Neri</u> INFN-LNS

0.8 0.7 0.6 0.5

0.4

0.2

▼ 2.51×10⁻³

	User defined				~	
	coldt11r(x,y,z)	coldt12r(x,y,z)	coldt13r(x,y,z)			
	coldt21r(x,y,z)	coldt22r(x,y,z)	coldt23r(x,y,z)			
	coldt31r(x,y,z)	coldt32r(x,y,z)	coldt33r(x,y,z)			
	Full			~		
	. det					
ela	ative permittivity (i	maginary part):				
ela	ative permittivity (i User defined	maginary part):				
ela "	utive permittivity (i User defined	maginary part): coldt12i(x,y,z)	coldt13i(x,y,z)			
ela "	User defined coldt11i(x,y,z) coldt21i(x,y,z)	coldt12i(x,y,z)	coldt13i(x,y,z) coldt23i(x,y,z)			

COMSOL CONFERENCE 2024 FLORENCE

October 22–24 FLORENCE TEATRO DEL MAGGIO MUSICALE FIORENTINO

• Perspectives

2.45 GHz ECR ion sources

Proton Source for the European Spallation Source (PS-ESS), developed and commissioned at INFN-LNS and sent to ESS in Sweden 01/02/2018

The team of the HSMDIS project (INFN-CSN5)

INFN-LNS in Catania: Lorenzo Neri (developper), Giuseppe Castro, Ornella Leonardi, Andrea Miraglia, Lugi Celona, Santo Gammino

INFN-LNL in Legnaro: Francesco Grespan, Michele Comunian

UNICT-DMI in Catania: **Giovanni Russo, Sebastiano Boscarino, Armando Coco** (mathematicians working on custom Poisson solver)

INGV in Catania: **Giuseppe Bilotta** (mathematician working on code optimization)

CNR-ISTP in Bari: Gianpiero Colonna, Annarita Laricchiuta, Francesco Taccogna (working on plasma chemistry)

PIC simulation of the HSMDIS magnetic configuration

PIC simulation tool From plasma formation to beam extraction

- **3D Initialization** of 1E7 particles
- **3D MagnetoStatic** simulation
- **3D** (2.45GHz) **ElectroMagnetic** simulation with tensorial complex permittivity

First electrostatic computations in COMSOL last **10 seconds** → Now custom Poisson solver needs only **0.064 seconds**

e1: H ₂ + e => H + H + e	e10: $H_2^{v} + e => H_2 + e$	e19: H ₂ ⁺ + e => H + H	i1: $H_2^+ + H_2 => H_3^+ + H_3$
$e2: H_2 + e => H_2^+ + e + e$	e11: H + e => H ⁺ + e + e	$e20: H_2^+ + e => H_2^+ + e$	i2: $H_2^+ + H_2^- => H_2^- + H_2^+$
e3: H ₂ + e => H ⁺ + H + e + e	e12: H + e => H + e	e21: H ₃ ⁺ + e => H ⁺ + H + H + e	i3: $H_2^+ + H => H_2^v + H^+$
e4: H ₂ + e => H ⁺ + H + e + e	e13: H + e => H ⁿ + e	e22: H ₃ ⁺ + e => H + H + H	i4: H ⁺ + H => H + H ⁺
e5: H ₂ + e => H ₂ + e	e14: H ⁿ + e => H + e	e23: H ₃ ⁺ + e => H ₃ ⁺ + e	i5: H ⁺ + H ₂ => H + H ₂ ⁺
e6: $H_2 + e => H_2^*$ (singlets) + e => H_2^v + e + hv	e15: H ⁿ + e => H ⁺ + e + e		i6: H ⁺ + H ₂ ^v => H + H ₂ ⁺
e7: H ₂ + e => H ₂ ⁻ + e + e => H ₂ ^v + e	e16: H+ + e => H+ + e	time: $H^n => H + hv$	i7: H ₃ ⁺ + H => H ₂ + H ₂ ⁺
$e8: H_2^{v} + e => H_2^{+} + e + e$	e17: H ₂ ⁺ + e => H ⁺ + H + e		i8: $H_3^+ + H_2 => H^+ + H_2 + H_2$
e9: H ₂ v + e => H + H + e	e18: H ₂ ⁺ + e => H ⁺ + H ⁺ + e + e		

Electromagnetic simulation

1) Compute the complex permittivity and save 18 griddedInterpolant functions

Er11I=griddedInterpolant(X,Y,Z,real(Le11)); save([DataDir,'Er11I'],'Er11I','-v7.3','-nocompression') Er12I=griddedInterpolant(X,Y,Z,real(Le12)); save([DataDir,'Er12I'],'Er12I','-v7.3','-nocompression') Er13I=griddedInterpolant(X,Y,Z,real(Le13)); save([DataDir,'Er13I'],'Er13I','-v7.3','-nocompression') Er21I=griddedInterpolant(X,Y,Z,real(Le21)); save([DataDir,'Er21I'],'Er21I','-v7.3','-nocompression') Er22I=griddedInterpolant(X,Y,Z,real(Le22)); save([DataDir,'Er22I'],'Er22I','-v7.3','-nocompression') Er23I=griddedInterpolant(X,Y,Z,real(Le23)); save([DataDir,'Er23I'],'Er23I'],'Er23I','-v7.3','-nocompression') Er31I=griddedInterpolant(X,Y,Z,real(Le31)); save([DataDir,'Er31I'],'Er31I'],'Er31I','-v7.3','-nocompression') Er33I=griddedInterpolant(X,Y,Z,real(Le32)); save([DataDir,'Er32I'],'Er32I'],'Er32I','-v7.3','-nocompression') Er33I=griddedInterpolant(X,Y,Z,real(Le33)); save([DataDir,'Er33I'],'Er33I'],'Er33I','-v7.3','-nocompression')

Eiiii = griddedInterpolant(X,Y,Z,imag(Le11)); save([DataDir,'Eii11'],'Eii11','-v7.3','-nocompression') Ei12I=griddedInterpolant(X,Y,Z,imag(Le12)); save([DataDir,'Ei12I'],'Ei12I','-v7.3','-nocompression') Ei13I=griddedInterpolant(X,Y,Z,imag(Le13)); save([DataDir,'Ei13I'],'Ei13I'],'Ei13I','-v7.3','-nocompression') Ei21I=griddedInterpolant(X,Y,Z,imag(Le21)); save([DataDir,'Ei21I'],'Ei21I','-v7.3','-nocompression') Ei22I=griddedInterpolant(X,Y,Z,imag(Le22)); save([DataDir,'Ei22I'],'Ei22I','-v7.3','-nocompression') Ei23I=griddedInterpolant(X,Y,Z,imag(Le23)); save([DataDir,'Ei23I'],'Ei23I','-v7.3','-nocompression') Ei31I=griddedInterpolant(X,Y,Z,imag(Le23)); save([DataDir,'Ei23I'],'Ei23I','-v7.3','-nocompression')

tic; modelRF.sol('sol1').runAll; disp([num2str(toc),' sec per calcolare risolvere il modello RF'])

2) Compute model using tensorial normittivity provided by Matlah functions 🔤 Plot 📼 Create Plot

MATLAB

3) Retrieve solution from COMSOL
for i=1:numel(CooI)-1
 [Erfx(maskRFf(CooI(i):CooI(i+1))),Erfy(maskRFf(CooI(i):CooI(i+1))),Erfz(maskRFf(CooI(i):CooI(i+1))),...
 Brfx(maskRFf(CooI(i):CooI(i+1))),Brfy(maskRFf(CooI(i):CooI(i+1))),Brfz(maskRFf(CooI(i):CooI(i+1)))]=mphinterp(modelRF,{...
 'emw.Ex','emw.Ey','emw.Ez','emw.By','emw.Bz'},'coord',Coo(:,maskRFf(CooI(i):CooI(i+1))),...
 'Complexout','on','Unit',{'V/m','V/m','T','T','T'});
end

Hardware

30 k€

- Supermicro AS-2025HS-TNR
- 2x AMD 9654, 96 cores each, 2.4GHz / 3.7GHz
- 1.6TB RAM DDR5 4800MT/s
- 6.4TB SSD NVME
- 16TB Hard Disk SATA3

Dummy VGA plug → Enable 1920x1080 remote desktop instead of 800x600

<pre>neril@server9654:~\$ neril@server9654:~\$ neril@server9654:~\$ sudo cpupower frequency-set -g performance [sudo] password for neril: Setting cpu: 0 Setting cpu: 1 Setting cpu: 2</pre>	BIOS Firmware Version
Setting cpu: 190 Setting cpu: 191 neril@server9654:-\$ cpupower frequency-info analyzing CPU 0: driver: acpi-cpufreq CPUs which run at the same hardware frequency: 0 CPUs which need to have their frequency coordinated by software: maximum transition latency: Cannot determine or is not supported hardware limits: 1.50 GHz - 3.71 GHz available frequency steps: 2.40 GHz, 1.90 GHz, 1.50 GHz available cpufreq governors: conservative ondemand userspace pow current policy: frequency should be within 1.50 GHz and 2.40 GHz The governor "performance" may decide which spee within this range. current CPU frequency: Unable to call hardware current CPU frequency: 3.70 GHz (asserted by call to kernel) boost state support: Supported: yes Active: no	0 ed. versave performance schedutil 2. ed to use

One COMSOL server for two Matlab instances

Perspectives about COMSOL use (1/2)

If you request too many values with "mphinterp"

Solution 1: increase swap memory

Solution 2: split into groups the values to be requested

for i=1:numel(CooI)-1
 [Erfx(maskRFf(CooI(i):CooI(i+1))),Erfy(maskRFf(CooI(i):CooI(i+1))),Erfz(maskRFf(CooI(i):CooI(i+1))),...
 Brfx(maskRFf(CooI(i):CooI(i+1))),Brfy(maskRFf(CooI(i):CooI(i+1))),Brfz(maskRFf(CooI(i):CooI(i+1)))]=mphinterp(modelRF,{...
 'emw.Ex','emw.Ey','emw.Ez','emw.By','emw.Bz'},'coord',Coo(:,maskRFf(CooI(i):CooI(i+1))),...
 'complexout','on','Unit',{'V/m','V/m','T','T','T'}');
end

With grouped data we lose the capability to store points of interest that are requested many times,

'keep' 'on' and "getData" don't work if modelnew [Esr(Mask),Esz(Mask),Vv(Mask)]=mphinterp(modelEs,{'es.Er','es.Ez','V'},'coord',Coo2, 'keep', 'on'); modelnew=false; else int=modelEs.result.numerical('interp_internal'); Esr(Mask)=int.getData(0); Esz(Mask)=int.getData(1); Vv(Mask)=int.getData(2); end

Is it possible to use "getData" with grouped data?

Perspectives about COMSOL use (2/2)

Custom Poisson solver was reduced to the solution of a linear system using Matlab "mldivide, \"

Decomposition is 9/10 of the computational cost. In Matlab, it is possible to do it once and use it every time.

M=decomposition(M);

Is it possible to save decomposition in COMSOL? Is it possible to use parts of the previous solver iteration?

 $F = G \frac{m_1 m_2}{d^2}$

Lorenzo Neri

Coulomb