

Be challenging, be smart: BE CAE & Test!

Structural Analyses on 3D Printed Objects Made from Experimentally Characterized Materials

Florence, 22-24/10/2024

We offer **consulting** services using innovative **CAE** simulation tools and **test** facilities.

We provide our clients with efficient and cost-effective solutions to reduce time to market.

https://www.comsol.com/certified-consultants

Certified Consultant

Introduction

Additive manufacturing (AM) offers several key advantages, such as versatility, efficiency and customization capabilities that are transforming traditional manufacturing processes.

- A. 3D drawing design
- B. Print parameter settings:
 - Mechanical characterization of the material
 - 1. **3D drawing** standard specimens
 - 2. Printing standard specimens with different settings
 - 3. Conducting mechanical tests
 - 4. Modelling for NUM-EXP validation
 - 5. Modelling of manufactured products
- C. 3D printing (AM)
- ✓ The **BE CAE & Test** company is able to follow the whole process

Additive manufacturing (AM) offers several key advantages, such as versatility, efficiency and customization capabilities that are transforming traditional manufacturing processes.

- A. 3D drawing design
- B. Print parameter settings:
 - Mechanical characterization of the material

- 3D drawing standard specimens
- 2. **Printing** standard specimens with different settings
- 3. Conducting mechanical tests
- 4. Modelling for NUM-EXP validation
- 5. Modelling of manufactured products
- C. 3D printing (AM)

B.1 3D drawing standard specimens

Tensile test

Additive manufacturing (AM) offers several key advantages, such as versatility, efficiency and customization capabilities that are transforming traditional manufacturing processes.

- A. 3D drawing design
- B. Print parameter settings:
 - Mechanical characterization of the material
 - 1. 3D drawing standard specimens

- 2. Printing standard specimens with different settings
- 3. Conducting mechanical tests
- 4. Modelling for NUM-EXP validation
- 5. Modelling of manufactured products
- C. 3D printing (AM)

Testing / Facilities

B.2 Print standard specimens with different settings

Tensile test

B.2 Print standard specimens with different settings

PLA INFILL 100%

Bending test

Additive manufacturing (AM) offers several key advantages, such as versatility, efficiency and customization capabilities that are transforming traditional manufacturing processes.

Steps to follow:

- A. 3D drawing design
- B. Print parameter settings:
 - Mechanical characterization of the material
 - 1. 3D drawing standard specimens
 - 2. Printing standard specimens with different settings

3. Conducting mechanical tests

- 4. Modelling for NUM-EXP validation
- 5. Modelling of manufactured products

C. 3D printing (AM)

Testing / Facilities

B.3 Conducting mechanical tests : Machine description

Universal machine with Thermal chamber

- Shimadzu AGS-X 10 kN
- Max. Load Capacity: 10kN
- Crosshead : Max. Return Speed: 1500mm/min
- Crosshead : Speed Range: 0.001 to 1000 mm/min (stepless)
- Thermal Chamber TCE 300: range -70°C / +280°C

B.3 Conducting mechanical tests: Test – Operating method

Test performed for No.3 specimen type (PLA INFILL 100% - 75% -25%):

- Tensile test at 1-5 [mm/min] and 50 [mm/min].
- Bending test at 2 [mm/min] and 50 [mm/min].
- Number of specimens: 10 per test;
- All tests performed at (23 ± 2) °C
- All samples are weighed
- The tensile test identified the E_t, Yield Point and the Stress function used to characterize materials in the model.
- NUM-EXP validation was carried out for tensile and bending tests.

B.3 Conducting mechanical tests: Test performed - Results

PLA INFILL 100%		
E_linear	1470 [MPa]	
Yield Stress Point	26 [MPa]	

PLA INFILL 75%		
E_linear	1380 [MPa]	
Yield Stress Point	24.3 [MPa]	

PLA INFILL 25%		
E_linear	1240 [MPa]	
Yield Stress Point	23 [MPa]	

Additive manufacturing (AM) offers several key advantages, such as versatility, efficiency and customization capabilities that are transforming traditional manufacturing processes.

- A. 3D drawing design
- B. Print parameter settings:
 - Mechanical characterization of the material
 - 1. 3D drawing standard specimens
 - 2. **Printing** standard specimens with different settings
 - 3. Conducting mechanical tests

- 4. Modelling for NUM-EXP validation
- 5. Modelling of manufactured products
- C. 3D printing (AM)

B.4 Modelling for NUM-EXP validation: Setting model – Boundary conditions

Prescribed displacement < disp>

Modelling / Results

B.4 Modelling for NUM-EXP validation: Results

Plots on the right: Force [N] - Disp [mm]comparison between Numerical (green curve) and Experimental data (black curve)

Modelling / Results

B.4 Modelling for NUM-EXP validation: Results

Plots on the right: Force [N] - Disp [mm]comparison between Numerical (green curve) and Experimental data (black curve)

-10

-20

-30

Additive manufacturing (AM) offers several key advantages, such as versatility, efficiency and customization capabilities that are transforming traditional manufacturing processes.

Steps to follow:

- A. 3D drawing design
- B. Print parameter settings:
 - Mechanical characterization of the material
 - 1. 3D drawing standard specimens
 - 2. Printing standard specimens with different settings
 - 3. Conducting mechanical tests
 - 4. Modelling for NUM-EXP validation

5.

Modelling of manufactured products

Additive manufacturing (AM) offers several key advantages, such that are transforming traditional manufacturing processes.

Steps to follow:

- A. 3D drawing design
- B. Print parameter settings:
 - > Mechanical characterization of the material
 - 1. **3D drawing** standard specimens
 - 2. Printing standard specimens with differe
 - 3. Conducting mechanical tests
 - 4. Modelling for NUM-EXP validation
 - 5. Modelling of manufactured products

C. 3D printing (AM)

C. 3D Printing (AM)

"Don't miss out!

Stop by our booth to claim your exclusive free gift—while supplies last!"

So...

If you want more information, that is not available, about the print settings for 3D products:

- ✓ Get standard-sized samples prepared;
- ✓ Send the samples to BE CAE test.

We will analyze:

 The material characteristics based on the various print settings.

Finally, we will use the Structural Mechanics module to:

- ✓ Identify the ideal dimensions of the object;
- ✓ Avoid unwanted breakage under certain loads;
- ✓ This will save time and money

Thank you all for your attention!

- Viale Africa, 170 A 95129 Catania (CT)
- Via Toscana, 104 41053 Maranello (MO)
- Calle Impresores, 20 28660 Boadilla del Monte (Madrid)
- ⊕ <u>www.be-caetest.it</u>
- 🖄 info@be-caetest.it
- [©] +39 095 216 64 26

BE CAE & Test s.r.l.

BE CAE & Test S.r.l. Be challenging, be smart: BE CAE & Test!