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Abstract 
We have recently published the discovery of avoided crossings present in the spectrum of freely vibrating 

rectangular thin plates [1]. COMSOL Multiphysics was a fundamental tool to accomplish this feat since we 

easily generated thousands of normal modes by changing the length of one side of the plate and we could 

classify them into symmetrical and anti-symmetrical modes. It was revealed that for each symmetry sector of the 

spectrum, avoiding crossings appear. Now we have found that the vibration of a free thin disk sector, also 

presents avoiding crossings in its spectra and its spacing ratio distribution approximates to the Rosenzweig-

Porter model of random matrices theory. 

 

Keywords: Free thin plate vibrations, wave cavities, avoided crossings, Rosenzweig-Porter model, symmetry.  

Introduction 
The study of the vibrations of thin plates is of great 

interest in science and engineering, since they 

appear as structural elements of various systems 

and devices of great use in society. Using thin 

plates, bridges or nanoscopic connectors, furniture, 

machinery and civil constructions are built; also we 

can even mention the important movement of 

tectonic plates that can cause earthquakes, affecting 

the life of large cities. In particular, the 

understanding of free plate vibrations has been an 

open problem for more than two hundred years [2] 

and now, with the development of the aerospace 

industry, characterization of these vibrations 

becomes necessary [3], for example it is important 

to know the resonant effect on the structure of a 

space satellite in orbit, due to the ignition of an 

electric motor. 

The results of the study on free vibrating thin plates 

shown in this work confirm once again the von 

Neumann-Wigner theorem [4, 5], that is, the 

general spectrum, of the plate studied, shows the 

existence of a degeneration of levels due to the 

mixing of all the symmetries of the system, while 

the repulsion levels or avoided crossings are only 

observed in each spectrum, corresponding to a 

single symmetry. 

 

 
Figure 1.- First six normal modes of the simulation for a 

thin plate with L = 60 cm. The out-of-plane displacement 

𝑊(𝑥, 𝑦) is displayed using a rainbow scale color in 

arbitrary units. 

 

Theory 
From classical plate theory [2, 6], we can deduce 

the thin plate equation, considering standing wave 

solutions of angular frequency ω that cause out-of-

plane deformations 𝑊(𝑥, 𝑦) of a plate of length L 

along the x axis, with width a on the y axis, and 

thickness h along the z axis: 

(𝛻4 − 𝑘4)𝑊(𝑥, 𝑦) = 0. (1) 

 

In this equation the biharmonic operator 

𝛻4 = 𝛻2 ∙ 𝛻2 is used with the Laplacian operator 

defined as 𝛻2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 and the wave 

number k given by 

𝑘2 = 𝜔√𝜌ℎ/𝐷, (2) 

where ρ is the density of the plate; here the flexural 

stiffness of the body D is defined as  

𝐷 = ℎ3𝐸/(12(1 − 𝜈2)), 
with E as the plate´s Young module and 𝜈 its 

Poisson coefficient. 

 

If we consider a thin plate vibrating freely, we have 

that the boundary conditions for the x axis applied 

to equation (1) are expressed as 

𝜕2𝑊

𝜕𝑥2
+ 𝜈

𝜕2𝑊

𝜕𝑦2
⃒𝑥=0,𝐿 = 0, 

𝜕3𝑊

𝜕𝑥3
+ (2 − 𝜈)

𝜕3𝑊

𝜕𝑥𝜕𝑦2
⃒𝑥=0,𝐿 = 0; 

from these relations, the free boundary conditions 

for the y axis are obtained, swapping x for y, and 

changing the length L for the width a of the plate. 

 

Notice that there are no known analytical solutions 

for equation (1) applying the above free conditions, 

but solutions for simply supported boundary 

conditions are exactly known [2, 6]. Theoretically, 

general solutions to equation (1) with simply 

supported boundary conditions show that a wave 

coming from the bulk (interior of the plate) is 
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reflected at the boundary and is redirected back 

towards the bulk, while in the case of free 

boundaries, apart from this reflected wave, there is 

another one, an evanescent wave that travels around 

the boundary [1].  

 

 
Figure 2.- Left: three out-of-plane modes in black and 

white that shows the symmetry along and across the free 

vibrating thin plate. Right: complete spectrum for all the 

simulated modes, frequency vs length. The three modes 

belong to different spectral lines. 

Simulation 
To study equation (1) with free boundary 

conditions, its flexural spectrum and eigenfunctions 

(normal modes) must be found numerically. The 

strategy followed was to simulate the deformations 

of a rectangular plate in three spatial dimensions, 

considering that one of its dimensions, its thickness, 

was very small compared to the two remaining 

dimensions. A vibrating rectangular aluminum plate 

was simulated in 3D using the Structural Mechanics 

module of COMSOL Multiphysics. This finite 

element method software solves the 3D equations 

of linear elasticity, also known as Navier-Cauchy 

equations, applying the variational principle [7]. 

 

Using the “Eigenfrequency Study” to find the 

normal modes of a body and their frequencies, a 

rectangular block with a width of 

 𝑎 = 344 𝑚𝑚, length of 𝐿 = 400 𝑚𝑚 and 

thickness ℎ = 6.35 𝑚𝑚 was drawn; with these 

dimensions we considered that we had a realistic 

thin rectangular plate, since the thickness was 

smaller than 10% of the length or width of the 

body. We choose the typical parameters for 

aluminum as the block material, that is, 𝜌 =
2700 𝑘𝑔/𝑚3, 𝐸 = 69 𝐺𝑃𝑎, and 𝜈 = 0.33.  

 

The boundary conditions were of course chosen as 

free, and after testing good convergence of the 

eigenfrequencies for different meshes, the 

“Extremely Fine” mesh was set, corresponding to a 

cutoff frequency of 967 𝑘𝐻𝑧 calculated using 

equation (2). 

 

To study the behavior of the normal modes of 

vibration of the plate as the length was varied, a 

parametric sweep was made for 200 length values, 

equally spaced, in the range of 𝐿𝑖 = 400 𝑚𝑚 to 

𝐿𝑓 = 800 𝑚𝑚. Determined to carry out laboratory 

experiments using the Spectral Acoustic Resonance 

technique, we decided to work in the acoustic 

regime, considering only simulated modes lower 

than 20 𝑘𝐻𝑧, so, for each plate length, a search for 

the first 70 vibration eigenfrequencies {𝑓𝑛},  

different from zero hertz (rigid body modes), was 

carried out. 

 

With a normal desktop computer, easily and 

quickly COMSOL generated information for 14000 

normal modes; a sample of these simulated modes 

are shown in Figure 1, where we can see using a 

rainbow color scale, the out-of-plane displacement 

𝑊(𝑥, 𝑦) of the first six modes of the plate with a 

length of 𝐿 = 600 𝑚𝑚. Notice that in the corners 

of these modes there is an extreme behavior in 

amplitude of the displacement, this is evidence of 

the mixing of evanescent and sinusoidal waves at 

the edges of the free plate. 

 

To ensure that only out-of-plane modes were 

analyzed, for each mode, the surface integral of the 

square of its vertical displacement was calculated in 

COMSOL and we only considered those modes 

whose integral is greater than a certain quantity 

𝜀 > 0; that is, we have an out-of-plane mode if 

∫ 𝑊2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 

𝑝𝑙𝑎𝑡𝑒

> 𝜀. (3) 

 

 
Figure 3.- Portion of the simulated spectrum of a freely 

vibrating rectangular thin plate, separated by symmetry 

sectors, using different colors, for out-of-plane modes 

below 1500 Hz with a) SS, b) SA, c) AS and d) AA 

symmetry. We can observe only avoided crossings 

between the spectral lines for each symmetry sector. 
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Results  
To analyze the thousands of generated modes, 

information on the plate´s length 𝐿𝑗 and its 

corresponding frequencies of the simulated modes 

{𝑓𝑗,𝑛} were extracted from COMSOL; the complete 

spectrum of the plate was constructed by plotting 

the frequency of the modes against their length. 

Fgure 2 shows a portion of the complete spectrum 

where we can appreciate that there are crossings 

between the spectral lines. 

 

We were curious to visually pursue how the shape 

of the mode changes as we moved along a spectral 

line. At first glance the modes have complex and 

seemingly wild colorful shapes, so after analyzing a 

few lines, we perceived that there were certain 

features that remain unchanged. A crucial point was 

the decision to change the display of the out-of-

plane displacement 𝑊(𝑥, 𝑦) from color to black and 

white. As can be seen on the left of Figure 2, the 

nodal lines of the modes are more evident in black 

and white, so we immediately realized that the 

symmetry of the modes was preserved when we 

moved along a given spectral line.  

 

 

 
Figure 4.- Left: Avoiding crossings between the spectral 

lines of the Antisymmetric-Symmetric sector for the out-

of-plane modes of the free vibrating rectangular plate. 

Right: Measured and simulated modes at two spectral 

lines, before an avoiding crossing, point A with plate 

length L = 400 mm, point C with L = 500 mm, and after 

the avoided crossing, points B and D with plate length L 

= 800 mm. Notice the swapping of modes´ shapes [5], A 

to D and C to B. 

Thus, we proceeded to classify the out-of-plane 

modes according to their symmetry with respect to 

the x, y axes, that is, we call a mode Symmetric-

Symmetric 𝑊𝑆𝑆 = 𝑊(𝑥, 𝑦), if its out-of-plane 

displacement has symmetry along and across the 

plate. We called a mode Antisymmetric-Symmetric 

𝑊𝐴𝑆 = 𝑊(𝑥, 𝑦) if it is antisymmetric along the 

length of the plate and symmetric across its width; 

similarly, we classify the modes into 𝑊𝐴𝐴 and 

𝑊𝑆𝐴. We extracted from COMSOL the information 

on the displacement 𝑊(𝑥, 𝑦) corresponding to the 

corners of the plate and classified each mode 

according to the sign of these displacements. 

 

By setting 𝜀 = 0.0005 and using relation (3) 

applied to the 14000 simulated modes, and 

classified according to their symmetry, it was 

obtained that 28.2% of them were 𝑊𝑆𝑆 modes, 

23.4% 𝑊𝑆𝐴 modes, 25.5% 𝑊𝐴𝑆 modes, 22.7% 

𝑊𝐴𝐴 modes and 0.03% modes that could not be 

classified (the vast majority in-plane modes). 

Plotting again frequencies vs lengths for each 

classification, as seen in Figure 3, new spectra were 

obtained that showed only avoided crossings 

between the lines for each symmetry sector of the 

free rectangular thin plate. This behavior was 

overlooked within the context of wave chaos theory 

for a system as simple as a rectangular wave cavity 

[8]. 

 

The parameters chosen for the simulation were such 

that we were able to buy commercial aluminum 

sheets, cut them and in the laboratory suspend them 

horizontally with the help of nylon threads. Using 

the spectral acoustic resonance technique, we could 

excite and measure the out-of-plane modes of the 

plates [1]. The right part of Figure 4 shows four 

pairs of images, where in each pair, the image on 

the left is the mode measured experimentally and, 

the image on the right is the mode predicted by the 

simulation. These image pairs correspond to the 

simulated modes at spectral points A and C, before 

an avoided crossing, as well as for points B and D 

after the avoided crossing, as shown in the left part 

of Figure 4. It is remarkable that in practical terms, 

to reconstruct experimentally the complete shape of 

a mode, it is only necessary to know its symmetry 

sector, excite the mode, and scan a quarter of the 

vibrating plate. 

 

To characterize the presence of avoided crossings 

[9], histograms of the spectral spacing ratios were 

constructed [1] and it was determined that, the 

average envelope is closer to a transition model of 

random matrix theory called Rosenzweig-Porter 

[10], similar to the distribution shown in Figure 5 

b). 

 

Final Remarks 
Since this phenomenon is not present for simple 

supported vibrating plates, our hypothesis is that 

these avoided crossings are caused by the presence 

of evanescent waves traveling at the system´s 

boundary [1]. Evanescent waves are a class of non-

Newtonian orbits, whose presence in a system 

generates spectra that show avoided crossings [11]. 
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Figure 5.- a) Simulation of a symmetrical normal mode of 

a disk sector for a 50° angle. b) Histogram of the spectral 

spacing ratios for 14000 normal modes of a disk sector 

generated by changing its angle. 

 

It is interesting to investigate whether the 

phenomenon occurs for other thin plates vibrating 

freely, plates with spatial symmetry. For the 

moment, we have been able to corroborate using 

COMSOL again, that in a freely vibrating disk 

sector [3], by varying the angle of the sector and 

obtaining its spectrum, now only classifying the 

modes into symmetric and antisymmetric ones, 

avoided crossings are found, whose spectral 

spacing ratio distribution envelope approximates to 

the Rosenzweig-Porter model, as seen in Figure 5 

b). Also notable in this case, it is the evanescent 

wave in the border of the plate, manifested through 

the large amplitudes of the mode at the corners of 

the disk sector, as shown in Figure 5 a). 

 

Interesting paths are opened to investigate and fully 

understand the phenomenon of avoided crossings in 

the spectra of vibrating plates, such as the 

relationships between the elastic variables and the 

parameters of the random matrix models, as well as 

the possible applications generated by applying 

multiphysics phenomena on the design and 

development of metamaterials [12, 13]. 
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