Excerpt from the Proceedings of the COMSOL Conference 2024 Florence

REFERENCES

3D Electric field calculation in hybrid insulation for electrotechnical equipment design

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, Laboratoire de Génie Electrique – G2Elab Grenoble, France

[1] Laure Tremas. Pre-breakdown and breakdown phenomena in air along insulating solids. PhD thesis, Universit´e Grenoble Alpes, 2017.

The triple point, where two insulators with different electrical properties and a conductor intersect is the most vulnerable part of an insulation system due to electric field (E) enhancement in \qquad which \overline{E} this region. Understanding pre-breakdown and breakdown at this triple point is crucial for designing gas/solid insulation systems. Factors influencing surface discharges and surface breakdown (surface flashover), include gas parameters, solid properties etc. [2].

[2] Z. Li, J. Liu, Y. Ohki, G. Chen, H. Gao, and S. Li, "Surface flashover in 50 years: Theoretical models and competing mechanisms," *High Voltage*, vol. 8, no. 5, pp. 853–877, 2023.

Surface flashover at the gas/solid interface in electrotechnical equipment is a critical issue. This research investigates such flashovers by examining the pre-breakdown and breakdown mechanisms through experimental studies and numerical simulations using COMSOL® Multiphysics to gain a deeper understanding of the phenomenon.

N. Moubarak¹, R.Hanna¹ and N.Bonifaci¹

Methodology ➢ 3D electric field calculation via COMSOL® Multiphysics Study 1 Study 2 ➢ Electric current physics : ➢ Electrostatic physics: $*$ J_e: Current density Q_s : External current source ρ_a : Volume charge density

(A) **Study 1:** Electric field as a function of time (B) **Study 2:** electric field as function of permittivity and charge density (C) **Study 2:** Electric field distribution at 8 μ C/m², ε _r = 4.2

This study focuses on the calculation of the electric field in

transient and in static regime. .

- \triangleright 5 µC/m² for $\varepsilon_r = 3.2$ \triangleright 7 µC/m² for ε_r = 5.2
- The surface charge density significantly influences the discharge mechanism by opposing the applied electric field.

➢ Combined parametric study to determine τ for the system's transition at 50 kV calculation done between $10^{-3} - 10^8$ s:

 \rightarrow σ = 10⁻¹¹ & 10⁻¹² S/m $\rightarrow \varepsilon_r = 2 \& 9$

 $^{2}V + \frac{Vq}{q} = 0$ $\rho_.$ $\mathcal E$ $\nabla^2 V + \frac{V}{\cdot} \frac{q}{\cdot} =$

1- determining **the characteristic time** of the voltage step at which \overline{E} becomes governed by conductivity (σ) instead of permittivity. 2- the influence of **surface charge density** (σ^q) and relative permittivity (ε_r). Existing experimental data [1] shows that in solid dielectrics with a $\varepsilon_r < 3$, the discharge behavior is similar to that of air alone. As $\varepsilon_{\rm r}$ increases, the mechanism shifts possibly due to the opposition of the electric field created by the accumulated surface charge in response to the applied field.

Introduction

FIGURE 1. Pre-breakdown and breakdown geometry of the point-plane electrode system with the dielectric placed perpendicular to the grounded plane electrode, where the surrounding medium is air.

• **Study 1: Near the triple point** (in the solid at : 100µm of the triple point)

$$
\triangleright 10^{-12} \text{ S/m for } \epsilon_r = 2 \rightarrow \tau = 2.5^* 10^2 \text{ s}^{-1}
$$

 $\geq 10^{-11}$ S/m for $\varepsilon_r = 9 \rightarrow \tau = 1.5 * 10^2$ s

• **Study 2:** Electric Field **near the triple point** (in the solid at :

100µm of the triple point) is at the same order of magnitude of the electric field in air without a solid for :

Results

FIGURE 2. Results for a 50 kV point electrode.

Under lightning impulse voltage (1,2/1200 µs) the system is primarily governed by permittivity.

➢ Combined parametric study to determine the required σ_q , ε_r and voltage to replicate discharge behavior in air:

 $\rightarrow \varepsilon_r = 2$ to 9 \rightarrow + and homogenous $\sigma_{\rm q}$ = 0.1 to 8 µC/m²

$$
- \nabla. (\sigma \nabla V - J_e) = Q_S
$$

