

3D Electric field calculation in hybrid insulation for electrotechnical equipment design

Surface flashover at the gas/solid interface in electrotechnical equipment is a critical issue. This research investigates such flashovers by examining the pre-breakdown and breakdown mechanisms through experimental studies and numerical simulations using COMSOL[®] Multiphysics to gain a deeper understanding of the phenomenon.

N. Moubarak¹, R.Hanna¹ and N.Bonifaci¹

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, Laboratoire de Génie Electrique – G2Elab Grenoble, France

Introduction

The triple point, where two insulators with different electrical properties and a conductor intersect is the most vulnerable part of an insulation system due to electric field (\vec{E}) enhancement in this region. Understanding pre-breakdown and breakdown at this triple point is crucial for designing gas/solid insulation systems. Factors influencing surface discharges and surface breakdown (surface flashover), include gas parameters, solid properties etc. [2].

This study focuses on the calculation of the electric field in

transient and in static regime.

1- determining **the characteristic time** of the voltage step at which \vec{E} becomes governed by conductivity (σ) instead of permittivity. 2- the influence of **surface charge density** (σ_q) and **relative permittivity** (ϵ_r). Existing experimental data [1] shows that in solid dielectrics with a $\epsilon_r < 3$, the discharge behavior is similar to that of air alone. As ϵ_r increases, the mechanism shifts possibly due to the opposition of the electric field created by the accumulated surface charge in response to the applied field.

Methodology > 3D electric field calculation via COMSOL® Multiphysics Study 1

* J_e: Current density
Q_s: External current source
ρ_q: Volume charge density
Study 2

Electrostatic physics:

FIGURE 1. Pre-breakdown and breakdown geometry of the point-plane electrode system with the dielectric placed perpendicular to the grounded plane electrode, where the surrounding medium is air.

Electric current physics :

$$-\nabla (\sigma \nabla V - J_e) = Q_s$$

Combined parametric study to determine τ for the system's transition at 50 kV calculation done between 10⁻³ - 10⁸ s:

→ σ = 10⁻¹¹ & 10⁻¹² S/m → ε_r = 2 & 9 $\nabla^2 V + \frac{\rho_q}{\varepsilon} = 0$

Combined parametric study to determine the required σ_q, ε_r and voltage to replicate discharge behavior in air:

→ ϵ_r = 2 to 9 → + and homogenous σ_q = 0.1 to 8 µC/m²

Results

• Study 1: Near the triple point (in the solid at : 100 μ m of the triple point)

> 10⁻¹² S/m for $\varepsilon_r = 2 \rightarrow \tau = 2.5 \times 10^2 s^{-10}$

> 10⁻¹¹ S/m for $\varepsilon_r = 9 \rightarrow \tau = 1.5^* 10^2$ s

Under lightning impulse voltage (1,2/1200 µs) the system is primarily governed by permittivity.

Study 2: Electric Field **near the triple point** (in the solid at :

FIGURE 2. Results for a 50 kV point electrode.

(A) **Study 1:** Electric field as a function of time (B) **Study 2:** electric field as function of permittivity and charge density (C) **Study 2:** Electric field distribution at 8 μ C/m², $\epsilon_r = 4.2$

 $100\mu m$ of the triple point) is at the same order of magnitude of the electric field in air without a solid for :

- > 5 μ C/m² for ϵ_r = 3.2
- \succ 7 μ C/m² for ϵ_r = 5.2
- The surface charge density significantly influences the discharge mechanism by opposing the applied electric field.

REFERENCES

[1] Laure Tremas. Pre-breakdown and breakdown phenomena in air along insulating solids. PhD thesis, Universit´e Grenoble Alpes, 2017.

[2] Z. Li, J. Liu, Y. Ohki, G. Chen, H. Gao, and S. Li, "Surface flashover in 50 years: Theoretical models and competing mechanisms," *High Voltage*, vol. 8, no. 5, pp. 853–877, 2023.

Excerpt from the Proceedings of the COMSOL Conference 2024 Florence