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Abstract 
Over the past 10 years, scientific, technical, and technological advancements have significantly propelled the 

integration of artificial intelligence and machine learning technologies within the field of physics, particularly in 

numerical simulations and the design of autonomous and efficient Digital Twins. In 2023, COMSOL 

Multiphysics® introduced, for the first time, functionalities of Surrogate Models, including the ability to train non-

informed neural networks using experimental data or models within the software. By training on data from velocity 

and pressure fields, we evaluated the accuracy and performance of these networks in predicting the backward-

facing step steady-state flow for Reynolds numbers (Re) up to ~900, comparing the results to experimental data. 

We tested various configurations of these networks and the Laminar Flow CFD model samples generated to train 

them. We measured both the validation accuracy (e.g., for Re<580 and Re<400) and the generalization accuracy 

of the trained networks in Reynolds number and spatial domains. Our preliminary work indicates that the most 

optimized neural networks are able to predict the extension of the primary recirculation zone with a minimum 

validation accuracy of 0.5% and a generalization accuracy ranging between 5.8% and 14.4%. We demonstrated 

that a neural network trained on 2D numerical simulation data for Re < 400 - where results align within 5% of 

experimental data - is able to produce generalization predictions consistent with experimental results in the range 

of 400<Re<920, where the flow becomes three-dimensional. With a computing time of ~0.6 seconds, the neural 

networks are 12.5 to 14 times faster than a non-linear stationary PARDISO solver operating on the same mesh 

within COMSOL Multiphysics®. 

Keywords: Numerical simulation, computational fluid dynamics, artificial intelligence, Deep Neural Networks 

for Physics, Digital Twin 

Introduction 
From elementary particles identification [1, 

2] to chemical processes simulations [3], progresses 

in machine and deep learning over the past decades 

have increasingly entered fields of physics, therefore 

benefiting to both industrial sectors and academic 

research.  

Those advances have improved the fidelity 

and efficiency of alternative neural network (NN) 

models in Computational Fluid Dynamics (CFD), 

when confronted to well-grounded predictions of 

non-deep learning models [4, 5, 6, 7]. In 2023, 

COMSOL® released surrogate model features, 

including the ability to train deep neural networks 

(DNNs) on COMSOL®-generated models or 

experimental data.  

The present work aims to study the 

predictions of those non-informed networks for the 

simulation of a steady-state laminar flow over a 

Backward-Facing Step (BFS) and a Reynolds 

Number Re ranging from 70 to 900. Such 

phenomenon widely occurs around buildings, in 

aerodynamics, heat transfer, engines, condensers, or 

vehicles (e.g. affecting air-filter performances [8]). 

Thus, over the last 40 years, this reference CFD 

problem has been thoroughly studied in 2D/3D 

experiments and numerical simulations [9, 10, 11, 

12, 13, 14, 15, 16], prompting well-established 

comparison data to the present work. This paper first 

describes the experimental setup, and assumptions 

made for the simulations. Then, the general 

governing model and methods set throughout the 

simulations are posed. The predictions accuracy of 

the resulting DNNs are then measured against 

reference numerical/experimental values, as well as 

the computing time of the DNNs in contrast to a non-

deep learning PARDISO solver in COMSOL®. 

Finally, ideas of improvements and the envisaged 

following steps to the present paper are discussed. 

General theory, setup, and assumptions 
Inspired by the experiment of [9], the 2D 

stationary simulations here are based on [17]. A 

channel, whose inlet is injected with a fully 

developed Poiseuille flow of viscosity μ[Pa ⋅ s] and 

maximum velocity Umax = Re ⋅
μ

ρhS
, abruptly 

expands by a E = 2.0 ratio, from width h1 to  

h2 = E ⋅ h1 at a step x = S of height hS (Figure 1). 

Henceforth, combined effects of free shear layer 

separation, walls frictions, and adverse pressure 

gradient (due to an expanding flow) form 

reattachment zones at the walls [9, 10]. Those 

delimit flow recirculation regions. There is a primary 

one sticking to the bottom step. Then, there is an 

upper secondary one which forms from Re > 300.  
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Governing equations and numerical setup 
CFD and simulation model 

Under COMSOL®, the 2D stationary, 

gravity-free, isothermal, incompressible Navier-

Stokes equations are solved through the ‘Laminar 

Flow’ physics of the ‘CFD Module’ on the same 

geometry as in the COMSOL® application [17]: 

 

𝛁 ⋅ 𝐮 = 0 , (1) 

ρ(𝐮 ⋅ 𝛁)𝐮 = −𝛁p + μ𝛁𝟐𝐮 , (2) 

 

where 𝐮 = (ux, uy), ρ, p are the flow velocity, 

density, and pressure fields. As the laws of similitude 

place significant emphasis on dimensionless 

parameters such as Reh, U/Umax, or y/h, water with 

ρ = 997 kg ⋅ m−3 and μ = 8.905 ⋅ 10−4 Pa ⋅ s is 

arbitrarily simulated at ambient room temperature 

[9]. Using second order Lagrange elements to model 

velocity and linear elements to model pressure helps 

stabilize the latter through the P1+P2 discretization 

scheme. Computing speed is improved by disabling 

the solution-stabilizing streamline diffusion, as the 

involved Reh remain low in this case. 

Inlet boundary conditions are set to 

‘Normal flow velocity’ U∞ = 4
y

h1
(1 −

y

h1
) ⋅

μ

ρhS
Re 

[11], whereas null static pressure is imposed along 

the Outlet. No-slip conditions are applied to each 

wall. 

For numerical cost-accuracy efficiency, 

quadrant mesh elements are prioritized far from the 

step’s edge, whose vicinity is meshed with more 

refined triangular elements (Figure 2). In any case, 

5-layer thick boundary layers are resolved near every 

wall. 

 

Velocity and pressure are solved using a 

more robust nonlinear Fully Coupled, Stationary, 

Direct PARDISO solver set with an ‘Automatic 

highly nonlinear (Newton)’ damping method. 

Surrogate Model Training and DNNs 

The newly released ‘Surrogate Model 

Training’ node is added to the study. Subsequent sets 

of models (hereafter called training model datasets) 

are therefore generated for the DNN trainings via a 

method of Latin Hypercube Sampling (LHS) of the 

Quantity of Interest (QoI) Re between Remin = 70 

and Remax. Following the same LHS method, and for 

each sampled Re, the values (𝐮, p) over the whole 

geometry are spatially sampled to build the full 

training model dataset of a first base DNN named 

AI#0. Subsequently, four other DNNs (AI#1, AI#2, 

AI#3, AI#4) are derived from AI#0, except that this 

time the (𝐮, p) values are more finely sampled at the 

one-point order spatial nodes of the Lagrange 

elements that form the mesh. Differences between 

the settings of those 5 successively improved DNNs 

and their datasets are detailed in the following 

section. 

Based on COMSOL®’s ‘Tubular Reactor 

Surrogate Model Application’ [18], all DNNs are 

built with 3-components inputs (x, y, Re), 3-

components outputs  (ux, uy, p), and 4 hidden layers 

accounting for 50, 40, 30, and 20 neurons, 

respectively. Throughout the DNN trainings, an 

Adaptative Moment Estimation (Adam) 

optimization algorithm is used to update the 

learnable parameters of each network, with a 

propagated batch size of 512, a learning rate of 10−3, 

and a maximum of 2000 epochs. For each DNN, a 

randomly picked 10% fraction of its training model 

dataset is extracted for the validation loss, while the 

remaining 90% is used for training loss and updates 

of the learnable parameters. Both losses are 

expressed as ‘Root mean-square errors’. For 

consistent comparison between the DNNs, their 

‘Random seeds’ used for operations with Random 

Number Generators (RNGs) are fixed by default to 

0. The same way, the ‘Initial Random Seeds’ of the 

sets generated by the ‘Surrogate Model Training’ 

node are fixed by default to 1014. 

Results and discussion  
AI#0: base DNN and accuracy metrics 

The training model dataset for the DNN 

AI#0 contains 4000 unique data values 

(x, y, Re, ux, uy, p), each associated to a unique 

Re value within the range 70<Re<580. Figure 3 and 

Figure 4 confront the predicted velocity and pressure 

maps between a Finite Element Method (FEM) 

COMSOL® simulation, and AI#0/AI#1/AI#2. They 

qualitatively show that all three trained DNNs can 

reproduce the global expected flow behaviours: 

deflection of the main inflowing streamlines, 

formation of 2 recirculation regions, 

velocity/pressure distribution, and the structure of 

the adverse pressure gradient. 

Figure 1. Sketch of the backward-facing step (BFS) flow 

field. 

Figure 2. Geometry mesh of the solved CFD model. 
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As pictured in Figure 5 and illustrated by 

Figure 6 for AI#0, the reattachment positions that 

delimit the primary and secondary recirculation 

regions along the walls are characterized by a null 

wall shear stress (switching between negative and 

positive τxy
wall): 

 

τxy
wall(x) = μ ⋅ ∂yux|

(x,y) on wall
= 0 (3) 

 

This way, as in [9, 10, 12], the accuracy of 

the DNNs’ predictions against the numerical and 

experimental reference values can be gauged in 

reattachment positions Lr, Ls1, and Ls2. On one hand, 

AI#0's validation accuracy on Lr performs well on 

unseen Re<580 data (corresponding to the range 

within which the DNN is trained), with relative 

differences from the references ranging between 

5.6% and 7.5% (averaging to 6.8%), as presented in 

. On the other hand, AI#0 fails to generalize accurate 

predictions on unseen data above Re=580, with 

relative differences between 23.2% and 44.1% 

(averaging to 30.6%). One explanation could be that 

the DNN is underfitting due to the insufficient size 

and model complexity of its training model dataset, 

making it unable to capture enough patterns that 

correlate the DNN's input and output variables. 

AI#1: increasing the size of the training data 

The sampling of the (𝐮, p) values on the 

spatial nodes of the mesh’s elements increases the 

size of AI#1’s training model dataset to ∼ 2.3 × 106 

unique (x, y, Re, ux, uy, p) values, which accounts to 

~600 times the size for AI#0. In contrary to the 

latter, for each sampled Re in [70 ;  580], thousands 

Lr(Re = 400) 

2δτxy
wall(Re = 400) 

Figure 6. Wall shear stress profiles inferred by AI#0 

along the downstream bottom wall. 

Figure 7. Width of the primary recirculation region 

against Re, from experimental references [9, 10] 

(black), a 2D finite-element COMSOL® simulation 

(magenta), AI#0 (green), AI#1 (blue), and AI#2 (red). 

Dashed line shows data inside the additional training 

range 400<Re<580 for AI#0 and AI#1, as AI#2 is only 

trained on Re<400 (full line). *: Lr = x − S such that 

|τxy
wall(x)| = ቚ∂yux|

(x,y) on wall
ቚ ≤ 0.05 ⋅ δτxy

wall, where:  

δτxy
wall = max (ቚ min

x on wall
(∂yux)ቚ , ቚ max

x on wall
(∂yux)ቚ) 

Figure 8. Same as Figure 7, but with the extents of the 

secondary recirculation region. 

Figure 3. Predicted velocity maps at Re=400 of the BFS 

flow by COMSOL® simulations and DNNs AI#0, AI#1, 

AI#2. 

Figure 4. Same as Figure 3, but with static pressure. 

Figure 5. Sketch of velocity profiles around reattachment 

zone.  
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more points over the whole geometry are thus 

sampled.  

As shown on Figure 7, this significantly 

improves both the validation (Re ≤ 580) and the 

generalization (Re > 580) accuracies of the DNN 

AI#1. In fact, relative differences to references on 

Lr range from 0.3% to 4.4% (averaging to 2.7%) on 

validation, and 15.2% to 22.6% (averaging to 

18.8%) on generalization.  

In contrast to AI#0, AI#1 now preserves the 

monotonously increasing length of the primary 

recirculation region, as expected from experimental 

data below Re < 900 (a faster flow prompting 

stronger inertial effects which move the 

reattachment zones further from the step [10]). 

Besides, as expected, Figure 8 confirms that 

the trained DNNs can reproduce the apparition of the 

secondary recirculation region above Re > 300.  

AI#1 reproduces the increase of the 

reattachment positions Ls1 and Ls2 with increasing 

Re, even though less accurately than with the 

primary recirculation region. In fact, AI#1’s relative 

differences to references on Ls2 − Ls1 range from 

17.3% to 29.2% on validation (averaging to 23.8%), 

and 39.6% to 75% on generalization (averaging to 

59.1%). 

On Lr and Ls2 − Ls1, differences between 

the predictions of AI#1 and the expected results may 

partly be due to the training dataset part within 

400 < Re < 580. In fact, as experimentally seen by 

[9, 12], the beforehand bi-dimensional flow becomes 

strongly three-dimensional above Re > 400, 

therefore producing disagreement between physical 

and 2D computational experiments [9], hence the 

latter’s divergence with the predictions of AI#1 on 

Figure 7. 

AI#2: a more pertinent preselection on training 

data  

In order to prove the last assumption, the 

training dataset of  AI#2 is subsequently restricted to 

70 < Re < 400, while maintaining the same size of 

∼ 2.3 × 106 unique values than AI#1. Therefore, 

AI#2 is only trained on data that fit with both 

physical and 2D computational experiments.  Figure 

7 and Figure 8 show that this preselection prompts 

clear improvement of generalization accuracy both 

on the primary and secondary recirculation regions 

(Re > 580). In fact, relative differences to 

references on Lr drop between 5.8% and 14.4% 

(averaging to 10.6%), whereas they drop between 

32.2% and 38.3% on Ls2 − Ls1 (averaging to 

35.1%).  

Besides, for validation accuracy (Re <
580), the relative differences to references on Lr  
range between 0.5% and 4.1% (averaging to 2.0%).  

AI#3, AI#4: accuracy on spatial generalization  

This section gauges how accurately the 

DNNs can generalize to regions of space which are 

unseen to them during the training process.  

AI#3 and AI#4 are based on AI#1 and AI#2, 

respectively. However, the sampled training points 
(x, y) a re here sampled on less broad regions of the 

geometry, namely restricted to beyond the step and 

to the vicinity of the two recirculation regions 

(hereafter named the generalization region). This 

way, AI#3 and AI#4 are tested in Figure 9 over the 

unseen upstream inlet of the channel, for Re = 650. 

Qualitatively, the predicted flows over the 

generalization region successfully remain horizontal 

and parallel. 

However, more precise measures show 

wide localized discrepancy between the predicted 

velocity magnitudes of the 2 DNNs and the FEM 

solver over the generalization region. For AI#3, the 

absolute gaps in velocity range from 10−3 % to 

91.5% of the maximum velocity Umax that is 

measured from the FEM solver. Nevertheless, all the 

gaps above 30% are concentrated inside a horizontal 

1mm-thick layer which is stuck all the way along the 

bottom wall of the generalization region. For AI#4 

(whose training model dataset is restricted to Re <
400), the gaps in velocity drop between 0.01% and 

59.8% of Umax from the FEM solver, hence again 

the importance of the preselection on the training 

data.  

Besides, for not yet understood reasons, all 

the gaps beyond 45% moved this time in a 0.5mm-

thick layer all the way along the upper wall of the 

generalization region.  

In any case, the DNNs constructed under 

COMSOL® in the present work have more 

difficulties in generalizing over (unseen) space than 

over (unseen) kinematics Re, especially near the 

walls where the boundary layers are less accurately 

reproduced. Forthcoming works may explore 

improvements to deal with these issues, perhaps 

through more robust and complex methods of deep 

learning or through fine-tuning on the training model 

dataset and hyperparameters of the DNNs (e.g. 

number of hidden layers or neurons per layer). Those 

investigations are not held in the present study. 

Figure 9. Generalization over the inlet channel of AI#3 

and AI#4 (grey frame), for Re=650.  
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Computing time against a non-deep learning 

solver 

To finish, the execution times of the DNNs 

are measured for different values of Re<1000, and 

compared to computing times of a nonlinear Fully 

Coupled, Stationary, Direct PARDISO solver that is 

set with an ‘Automatic highly nonlinear (Newton)’ 

damping method, all executed on the same mesh 

within COMSOL®. To take account of statistical 

fluctuations (e.g. from hardware responses), each 

measure is repeated 10 times in a row. 

First, no variation beyond 1% is measured 

between the execution times of the 5 tested DNNs, 

for the same any value of Re.  

Second, Table 1 and Figure 10 show that the 

DNNs execute between 12.5 and 14 times faster than 

the PARDISO solver, even dropping under 1 s on an 

Intel® Core™ i7-1185G7 @ 3.00GHz processor. 

Furthermore, the DNNs keep a more constant 

computing time than the PARDISO solver over the 

explored range 𝑅𝑒 < 1000. All these results are 

consistent with the fact that, aside from the 

hardware, the execution time of each DNN used here 

rather depends on the architecture and topology of 

the neural network, through the number of neurons 

and hidden layers. In other words, the same number 

of operations are repeated by the computer with any 

input value of Re. 

 

Re (1) 𝐭𝐃𝐍𝐍
𝐞𝐱𝐞𝐜 (s) 𝐭𝐏𝐀𝐑𝐃𝐈𝐒𝐎

𝐞𝐱𝐞𝐜  (s) 

650 0.56 ± 0.04 7.50 ± 1.00 

750 0.57 ± 0.08 7.60 ± 1.10 

1000 0.60 ± 0.08 8.10 ± 0.70 
Table 1: Computing and executing times 

 

Conclusions  
Under COMSOL®, we were able to set 

efficient, fast, and increasingly accurate deep neural 

networks which can reproduce physical and 

computational experiments of a steady-state BFS 

laminar flow.  

We showed that throughout the training 

process of the DNNs, improved accuracy compared 

to validated references needs a careful attention to: 

the size and model complexity of the training 

dataset; the pertinence of the sampled data through 

preselection.  

We illustrated with our test case that a 

neural network trained on 2D numerical simulation 

data - within the range of Reynolds number where 

results align with experimental data - can produce 

generalization predictions consistent with 

experimental results in the range of 400<Re<920 - 

where the flow becomes three-dimensional. 

The built DNNs have low execution time 

compared to non-deep learning methods. This 

propriety lays an interesting base for possible 

applications and integrations of such DNNs into 

reactive devices or codes that probe BFS flows (and 

more generally, various problems of physics).  

Even though we’ve seen that the DNNs 

introduced in 2023 within COMSOL® are already 

powerful, we may note that they remain non-

informed. Therefore, more advanced studies may 

explore the use of more complex methods of deep 

learning, such as recurrent neural networks [3] or 

physics-informed neural networks [7, 19, 20]. For 

forthcoming works, such methods may also help in 

accurately solving unsteady flows [20].  Finally, as 

the present work didn’t explore the variation of the 

networks’ architecture and algorithms, a thorough 

fine-tuning of the hyperparameters for the present 

DNNs might also ensure better optimization of the 

accuracy of their predictions [5]. 
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