

**Numerical and Experimental** Study of Melt Instabilities **During Spot Laser Welding of** Aluminium

Study melt instabilities and resulting porosities using a simple model. Two new ideas concerning the vaporisation simulation and the Level Set method.

B.F. Chetan<sup>1,2</sup>, M. Courtois<sup>2</sup>, S. Cadiou<sup>2</sup>, M. Carin<sup>2</sup>, V. Nain<sup>1</sup>, F. Machi<sup>1</sup> 1. IREPA LASER, Parc d'Innovation, 67400 Illkirch, France.

# **Introduction and Goals**

- Increasing need to weld reflective materials such as aluminium.
- Development of new laser technologies (beam shaping).
- How to choose optimal laser parameters and control the process?

# Main Physics

#### Level-Set transport

$$\frac{\partial \phi}{\partial t} + \vec{u}.\vec{\nabla}\phi - \dot{m}\left(\frac{1-\phi}{\rho_v} + \frac{\phi}{\rho_l}\right)\delta(\phi) = \gamma_{ls}\vec{\nabla}.\left(\epsilon_{ls}\vec{\nabla}\phi - \phi(1-\phi)\frac{\vec{\nabla}\phi}{\left|\vec{\nabla}(\phi)\right|}\right)$$

#### Heat transfer

$$\rho c_p^{eq} \left[ \frac{\partial T}{\partial t} + \nabla \cdot (\vec{u} T) \right] = \nabla \cdot (k \nabla T) + \left( q_{laser} - q_{evap} \right) \cdot \delta_1(\phi)$$

Optimisation of energy deposition in the metal :  $\delta(\phi) \rightarrow semi \ Dirac \ \delta_1(\phi)$ 

### Fluid mechanics



Need to develop a simple but accurate model for prediction.

# **Two New Ideas**

#### **Mass-conserving method**

A corrective source term is added to mass conservation equation

 $Q_{corr} = \eta_1 |m_0 - m(t)|. (\phi > 0.5)$ 

#### Vaporisation and plume velocity

An external force is added to momentum equation

$$\vec{F}_{forcing} = \eta_2 \frac{m}{\rho} \vec{n}. (\phi \le 0.5)$$



### Validation of the Model



# **Melt Pool Dynamics** t = 3.3 ms t = 150 us T<sub>max</sub> = 3200 K, V<sub>max</sub> ≈2 m/s $T_{max} = 2700 \text{ K}, V_{max} = 0.3 \text{ m/s}$ $T_{max} = 3125 \text{ K}, V_{max} \approx 1 \text{ m/s}$

### FIGURE 4. Dynamics of the melt pool.







Conduction (a), keyhole (b), and unstable **keyhole** regime (c).

**Keyhole collapse** and gas bubbles formation (a), **bubbles floating** (b), and **residual porosity** (c).

### **Conclusions - Perspectives**

→ Satisfying model. To be upgraded to 3D geometry + multiple reflections calculation  $\rightarrow$  Need to beam shaping for melt instabilities control [2]

### REFERENCES

[1] A. Esmaeeli and G. Tryggvason, 'Computations of film boiling. Part I: numerical method', Int. J. Heat Mass Transf., vol. 47, no. 25, pp. 5451–5461, Dec. 2004, doi: 10.1016/j.ijheatmasstransfer.2004.07.027. [2] S. Geng, W. Yang, P. Jiang, C. Han, and L. Ren, 'Numerical study of keyhole dynamics and porosity formation during high-power oscillating laser welding of medium-thick aluminum alloy plates', Int. J. Heat Mass Transf., vol. 194, p. 123084, Sep. 2022, doi: 10.1016/j.ijheatmasstransfer.2022.123084.





Excerpt from the Proceedings of the COMSOL Conference 2024 Florence