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Abstract 
In the present paper a framework for simulating hole spin qubits using COMSOL Multiphysics is presented. The 

tool solves the coupled Poisson and Schrödinger equations within the four-bands k ⋅ p Hamiltonian, accounting 

for the effects of a static magnetic field B. The gyromagnetic matrix g and its derivative g′ with respect to the gate 

voltage are obtained from the wavefunctions at zero magnetic field. The g and g′ matrices enable the calculation 

of the Rabi frequency as a function of the magnetic field, considering first-order contributions from both the 

magnetic field and gate voltage. Results for a qubit hosted in a silicon nanowire produced with SOI technology 

are presented. 
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Introduction 
Among the different technological platforms being 

explored for building large-scale multi-qubit 

quantum computers, spin qubits in silicon quantum 

dots (QDs) stand out as a highly promising option. 

This is because isotopically purified silicon allows 

for long spin lifetimes. Additionally, silicon is well-

suited for integrating quantum devices with classical 

electronics [1]. Hole spin qubits are particularly 

advantageous over electron spin qubits because the 

hole spin couples more easily to the orbital motion, 

enabling purely electrical control of the spin [2]. 

From a modeling perspective, developing a 

Quantum-CAD (QCAD) framework is highly 

valuable for supporting device design and exploring 

new solutions, similar to how TCAD tools are used 

in nanoelectronics. 

In this paper, we describe a QCAD tool based on 

COMSOL Multiphysics to study hole spin qubits in 

semiconductor quantum dots. This tool self-

consistently calculates both the electrostatic 

potential and the energy levels of a hole in a quantum 

dot under the influence of a static magnetic field. 

Additionally, it computes the gyromagnetic matrix, 

which fully describes the qubit properties and allows 

for the calculation of the Rabi frequency as a 

function of the magnetic field orientation [3]. 

Simulated devices 
Fig. 1 illustrates the geometry of the simulated 

structure (see caption for details). It is based on SOI 

(Silicon-on-Insulator) technology, featuring a [110]-

oriented silicon nanowire embedded within an SiO2 

layer that hosts the qubit. Three metal gates are used 

to create a potential well to trap a hole beneath the 

central gate. The central gate is biased with a voltage 

𝑉CG, and a radiofrequency (RF) modulation with 

amplitude 𝑉ac is applied to control the qubit state. 

The lateral gates are held at a fixed zero voltage. A 

bottom contact, biased at voltage 𝑉BC, serves as a 

substitute for the doped silicon substrate. The entire 

structure is covered with a passivating SiO2 layer, 

which has been removed in the figure for clarity.  

The mathematical model 
The potential profile in the device is first computed 

with Poisson equation. The charge in the Si nanowire 

is very small and can be neglected in practice. 

Dirichlet boundary conditions are used in the 

contacts and Neumann conditions for the remaining 

boundaries.  

The four-band k⋅p Luttinger-Kohn (LK) 

Hamiltonian [4,5] for the valence band is used to 

compute the hole eigenstates. Full details and 

equations are provided in Appendix A. This model 

essentially accounts for the behavior of the heavy-

hole (HH) and light-hole (LH) components of the 

wavefunction. Schrödinger equation in this case is a 

system of four PDEs in the four unknown 

components of the wavefunction envelope. Zero 

wavefunction boundary conditions are applied at the 

Si/insulator interfaces, (i.e. the wavefunction is not 

allowed to penetrate into the insulator regions). Zero 

boundary condition is also applied to the two 

terminating faces of the nanowire. This is supposed 

to be a good approximation, since under the lateral 

gates the wavefunction is small anyhow, due to the 

longitudinal confinement.  

Rabi frequency can be calculated either using the 

direct method, leading to Eq. (13) in Appendix B, or 

through the first-order approximation of the g-matrix 

formalism described in Appendix C, which follows 

the theory outlined in reference [3]. The g-matrix 

approach offers the benefit of not requiring the 

eigenvalue problem to be solved for every magnetic 

field orientation, as opposed to the direct method. 

COMSOL implementation 
Poisson equation is solved with the Poisson equation 

module. 
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The eigenvalue problem is solved with the 

Schrödinger equation module. In this case the 

wavefunction has four components, so the 

Hamiltonian becomes a 4×4 operator matrix, the 

elements of which are differential operators of at 

most second order. These diagonal and off-diagonal 

elements of the Hamiltonian matrix are entered using 

built-in features of the Schrödinger Equation physics 

interface. The benchmark models [6] and [7] from 

the Application Libraries show how to set up 

multiple wavefunction components with the 

Schrödinger Equation interface. 

The discretization mesh in the SiO2 domains consists 

of free tetrahedral elements, with size ranging from 

2.34 nm to 13 nm, built with the “Normal” option. 

The mesh in the Si domain consists of 4500 (i.e. 

15×15×20) finite difference elements; a higher 

number of elements is chosen in the z-direction, 

which is the main quantization direction. Fig. 2 

shows a discretized section of the structure potential 

on the cross section at the (y, z) plane. 

The calculation of the Rabi frequency requires the 

computation of elements of the matrix 𝐷1 (Appendix 

B, Eq. (13)) between the two ground states.  

Similarly, the terms of matrices g and g’ are 

computed as elements of the matrix 𝑴1(Appendix C, 

Eq. (16)) involving the zero-field states of the qubit. 

All such matrix coefficients, involving integrals over 

the entire Si domain volume, are efficiently 

calculated by COMSOL with the built-in intop 

function. Finally, LiveLink™ for MATLAB® 

allows to easily export the computed terms and 

determine the Rabi frequency (Appendix C, Eq. 

(17)). 

Results 

Potential 

As an example, electric potential on the cross section 

at the (x, z) plane at y = 0 is plotted in Fig. 3 for 𝑉CG =
−0.1 V and 𝑉BC = 0 V, corresponding to one hole 

captured in the nanowire under the central gate. 

Zero field wavefunction 

The results presented in this Section are obtained 

with B = 0 T. At zero magnetic field each energy 

eigenvalue is double degenerate due to symmetry 

reasons, forming the so called Kramers doublet. The 

calculated energy gap between the ground and the 

first excited doublet at 𝑉CG = −0.1 V and 𝑉BC =
 0 V is 𝛥𝐸 = 4.03 meV. 
The square moduli of the four components of one of 

the ground states on the (y, z) plane at x = 0 (i.e. just 

under the central gate, see Fig.1) are reported in Fig. 

4. They show a dominant HH (Jz = ±3/2) character. 

Rabi frequency 

Fig. 5 shows the plot of the Rabi frequency as a 

function of 𝑉BC at 𝑉CG = −0.1 V, 𝑩 = (0,1,1)/√2 T 

and 𝑉ac = 1 mV. The results obtained with the g-

matrix formalism (17) are compared with the 

standard procedure (13). The very good agreement 

between the two approaches demonstrates that for 

the applied value of B the device operates in linear 

regime.  

 

 

 Fig. 3. Electric potential on the cross section at the (x, z) 

plane at y = 0 (see Fig. 1), for 𝑉CG = −0.1 𝑉 and           

𝑉BC = 0 𝑉.  

Fig. 1. Simulated structure. Color code: red for Si, green 

for SiO2, grey for metal gates. The Si nanowire cross 

section is 10 nm × 30 nm, the bottom oxide thickness 25 

nm, the central gate length 30 nm, the lateral gates length 

20 nm, the gate spacing 30 nm, the thin SiO2 layer 

thickness 3 nm. The structure is covered by a passivating 

SiO2 layer (not shown). The gates overlap 20 nm out of 30 

nm of the nanowire. The x axis is parallel to the 

longitudinal nanowire axis. The crystallographic 

orientation is illustrated in the inset. 

Fig. 2. Example of discretization mesh on a (y, z) plane 

cross section. The mesh in the SiO2 domains consists of 

free tetrahedral elements, built with the “Normal” option. 

The mesh in the Si domain consists of 15×15×20 finite 

difference elements. 
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Conclusions 
A simulation framework for hole spin qubits 

developed using COMSOL Multiphysics is 

presented, enabling numerical characterization of the 

device. This tool can serve as a CAD resource for 

analyzing qubit properties, including sensitivities to 

geometric parameters, material defects, and process 

variations. While results have been demonstrated for 

silicon, the tool is also easily adaptable to other 

semiconductor materials, such as Ge/SiGe. 
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Fig. 4. Squared HH (Jz= ±3 2⁄ ) and LH (Jz= ±1 2⁄ ) 

envelopes of the ground-state doublet on the (y, z) plane at 

x = 0 (see Fig. 1), at 𝑉CG = -0.1 V and 𝑉BC = 0 V. The HH 

components are almost four times larger than the LH 

components. 

Fig. 5. Rabi frequency vs. 𝑉BC for B = (0, 1, 1) /√2 T and 

𝑉ac = 1 mV at 𝑉CG = -0.1 V. The results obtained with the 

g-matrix approach (solid lines) are compared with the 

standard procedure (circles). The plot shows excellent 

agreement.  
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Appendix A: Hamiltonian model 
The hole states are obtained by diagonalizing the 

four-bands k ∙ p Luttinger-Kohn (LK) Hamiltonian 

[4,0] for the valence band. The HH and LH 

components of the wavefunction are mapped onto 

the Jz = ± 
3

2
 and Jz = ± 

1

2
 components of a J = 

3

2
 total 

angular momentum, respectively. The total 

Hamiltonian reads 

𝐻 = 𝐻𝐾 + 𝐻𝑍 + 𝑉𝑡(𝑉CG, 𝒓) (1) 

where 𝐻𝐾  is the kinetic term, 𝐻𝑍 the Zeeman term 

and 𝑉𝑡(𝑉CG, 𝒓) the potential energy, which is a 

function of position and depends on the voltage 𝑉𝐶𝐺  

applied to the central gate. The potential profile is 

obtained through the solution of Poisson equation.  

In the {|
3

2
,
3

2
⟩ , |

3

2
,
1

2
⟩ , |

3

2
, −

1

2
⟩ , |

3

2
, −

3

2
⟩} basis set, the 

𝐻𝐾  component of the Hamiltonian reads [5] 

𝐻𝐾 = ⎯

[
 
 
 
𝑃 + 𝑄 −𝑆 𝑅 0

−𝑆† 𝑃 − 𝑄 0 𝑅

𝑅† 0 𝑃 − 𝑄 𝑆

0 𝑅† 𝑆† 𝑃 + 𝑄]
 
 
 

 (2) 

where 

𝑃 =
ℏ2

2𝑚0
𝛾1(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑦

2) (3) 

𝑄 =
ℏ2

2𝑚0
𝛾2(𝑘𝑥

2 + 𝑘𝑦
2 − 2𝑘𝑧

2) (4) 

𝑅 =
ℏ2

2𝑚0
√3[−𝛾3((𝑘𝑥

2 − 𝑘𝑦
2) + 2𝑖𝛾2{𝑘𝑥 , 𝑘𝑦}] (5) 

𝑆 =
ℏ2

2𝑚0
2√3𝛾3[ {𝑘𝑥 − 𝑖𝑘𝑦 , 𝑘𝑧}] (6) 

with {𝐴, 𝐵} =
1

2
(𝐴𝐵 + 𝐵𝐴). Here 𝒌 = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) 

is the wavevector, 𝑚0 the free electron mass and 𝛾1, 

𝛾2, 𝛾3 the Luttinger parameters that characterize the 

valence band. The reference system axes are defined 

in Fig. 1. Notice that the x-axis, that is the 

longitudinal nanowire axis, corresponds to the [110] 

crystal orientation.  

At finite magnetic field B, the HH and LH 

components are also mixed by the Zeeman 

Hamiltonian 𝐻𝑍 

𝐻𝑍 = 2𝜇𝐵(𝜅𝑩 ∙ 𝑱 + 𝑞𝑩 ∙ 𝑱3) (7) 

where 𝜇𝐵 is the Bohr magneton, 𝑱 = (𝐽𝑥, 𝐽𝑦 , 𝐽𝑧)  is the 

spin 
3

2
 operator, 𝑱3 = (𝐽𝑥

3, 𝐽𝑦
3, 𝐽𝑧

3) and κ, q are the 

isotropic and cubic Zeeman parameters. The 𝑱 

matrices consistent with the basis set of (2) read: 

 

𝐽𝑥 =
1

2

[
 
 
 
 0 √3 0 0

√3 0 2 0

0 2 0 √3

0 0 √3 0 ]
 
 
 
 

 (8) 

𝐽𝑦 =
𝑖

2

[
 
 
 
 0 −√3 0 0

√3 0 −2 0

0 2 0 −√3

0 0 √3 0 ]
 
 
 
 

 (9) 

𝐽𝑧 =
1

2
[

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

]. (10) 

The action of the magnetic field on the orbital motion 

of the hole is described by the substitution             

𝒌 ⟶ −𝑖𝜵 + ⅇ 𝑨 ℏ⁄ , where 𝑨 is the vector potential. 

By choosing the Landau gauge ∇ ∙ 𝑨 = 𝟎, for 

constant magnetic field B the vector potential reads:  

𝑨 = −(𝑦𝐵𝑧 , 𝑧𝐵𝑥 , 𝑥𝐵𝑦). (11) 

It should be noticed that B enters the Hamiltonian 

through both the Zeeman term 𝐻𝑍 and the kinetic 

term 𝐻𝐾  via the 𝒌 operator.  

Appendix B: direct calculation of the Rabi 

frequency 
This Appendix and the following one closely follow 

the theory outlined in [3]. Consider a QD in a 

homogeneous and static magnetic field B. Assume 

the central gate voltage 𝑉CG(𝑡) =
𝑉0 +  𝑉acsin(2𝜋𝑓𝑡 + 𝜑), with 𝑉0 the reference bias 

voltage. The Hamiltonian can then be expressed as 

 

𝐻(𝑉CG, 𝑩) = 𝐻0(𝑉CG) −  𝑩 ∙ 𝑴1 +  𝒪(𝐵2) (12) 

 

where 𝑴1 = (𝑀1,𝑥 𝑀1,𝑦 𝑀1,𝑧) is a vector composed 

of three matrices 𝑀1,𝑘 = −
𝜕𝐻

𝜕𝐵𝑘
|
𝑩=0

and is assumed to 

be independent of 𝑉CG. We label |𝟙⟩, |𝟘⟩ the lowest-

energy eigenstates of 𝐻(𝑉0, 𝑩). The corresponding 

eigenenergies are 𝐸𝟙 and 𝐸𝟘, respectively.  At 𝑩 = 𝟎 

the two states are degenerate (Kramers doublet). 

Degeneracy is broken with the application of the 

finite static magnetic field: the two eigenenergies are 

split by the Zeeman energy ∆𝐸 = 𝐸𝟙 − 𝐸𝟘 =
𝑔∗𝜇𝐵𝐵, where 𝑔∗ is the effective gyromagnetic 

factor that may depend on the orientation of B. The 

RF modulation of the voltage 𝑉CG(𝑡) at resonance 

(ℎ𝑓 = ∆𝐸) produces coherent oscillations between 

states |𝟘⟩ and |𝟙⟩ with Rabi frequency 

 

𝑓𝑅 =
𝑒

ℎ
𝑉𝑎𝑐|⟨𝟙|𝐷1|𝟘⟩|, (13) 

 

where 𝐷1(𝒓) =
𝜕𝑉𝑡(𝑉CG,𝒓)

𝜕𝑉CG
|
𝑉CG=𝑉0

is the derivative of 

the potential energy 𝑉𝑡(𝑉CG, 𝒓) with respect to the 

gate voltage 𝑉CG. 
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Appendix C: Rabi frequency in the g-matrix 

formalism 
Recalling the 𝐻(𝑉CG, 𝑩) expression (12), we can also 

expand the B-independent term 𝐻0(𝑉CG) in powers 

of 𝛿𝑉 = 𝑉CG − 𝑉0  

𝐻0(𝑉CG) = 𝐻0(𝑉0) + (𝛿𝑉)𝐷1 + 𝒪(𝛿𝑉2), (14) 

 

and we call | ⇑⟩, | ⇓⟩ the degenerate Kramers doublet 

eigenstates of 𝐻0(𝑉0). To first order in 𝑩 and 𝑉ac, an 

effective two-states Hamiltonian can be derived 

having the form 

𝐻eff(𝑉CG, 𝑩) =
1

2
𝜇𝐵 𝝈 ∙ 𝑔(𝑉CG)B, (15) 

where 𝝈 is the vector formed of the Pauli matrices 

and 𝑔 is a real 3×3 matrix called gyromagnetic 

matrix. For 𝑉CG = 𝑉0 the g-matrix can be expressed 

as 

𝑔(𝑉0) =

−
2

𝜇𝐵
[

𝑅ⅇ⟨⇓ |𝑀1,𝑥| ⇑⟩ 𝑅ⅇ⟨⇓ |𝑀1,𝑦| ⇑⟩ 𝑅ⅇ⟨⇓ |𝑀1,𝑧| ⇑⟩

𝐼𝑚⟨⇓ |𝑀1,𝑥| ⇑⟩ 𝐼𝑚⟨⇓ |𝑀1,𝑦| ⇑⟩ 𝐼𝑚⟨⇓ |𝑀1,𝑧| ⇑⟩

⟨⇑ |𝑀1,𝑥| ⇑⟩ ⟨⇑ |𝑀1,𝑦| ⇑⟩ ⟨⇑ |𝑀1,𝑧| ⇑⟩

], (16) 

where 𝑔 depends on 𝑉0 through the states 

| ⇑⟩, | ⇓⟩. The g-matrix can be factorized in the form 

(singular value decomposition) 𝑔 = 𝑈𝑔𝑑𝑉𝑇 , where 

𝑈 and 𝑉 are 3×3 unitary matrices and 𝑔𝑑 =
diag(𝑔𝑥, 𝑔𝑦 , 𝑔𝑧) is a diagonal matrix, with 𝑔𝑥, 𝑔𝑦  

and 𝑔𝑧 the principal g-factors. 

By considering the derivative of 𝑔 with respect to the 

gate voltage at 𝑉CG = 𝑉0, 𝑔′(𝑉0) = 
𝜕𝑔(𝑉CG)

𝜕𝑉CG
|
𝑉CG=𝑉0

, 

one can express the Rabi frequency as 

 

𝑓𝑅 =
𝜇𝐵𝐵𝑉𝑎𝑐

2ℎ|𝑔(𝑉0)𝒃|
|[𝑔(𝑉0)𝒃] × [𝑔′(𝑉0)𝒃]|, (17) 

 

where 𝒃 = 𝑩/𝐵. The knowledge of 𝑔(𝑉0) and 

𝑔′(𝑉0) is therefore sufficient to compute the Rabi 

frequency for any magnetic field direction. This 

procedure is correct to first order in 𝑩 and 𝑉ac. 

 

 

 

 


