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Abstract: In this paper, we explore the use of 
COMSOL for studying sub-wavelength gratings. 
This software appears ideal for this application 
as it is capable of solving Maxwell's vectorial 
equations with appropriate boundary conditions. 
In addition, it demonstrates the polarization 
dependent behaviour of such gratings. The model 
developed uses an incident plane wave and 
Floquet periodicity as a boundary condition to 
replicate a unit cell. The parameters, calculated 
from earlier work, of the polarizing beam 
splitting grating, are verified in this paper with 2-
dimensional transmission grating models. The 
diffraction efficiencies of the transverse electric 
and transverse magnetic orders obtained, affirm 
the validity of the simulation.  
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1. Introduction 
 

Phase gratings are used in many applications 
due to their high diffraction efficiencies. With 
sub-wavelength dimensions, the behaviour of a 
simple binary phase grating becomes 
polarization dependent1, as shown in Figure 1. 
One way of characterizing such a grating is to 
calculate the diffraction efficiency. In this case, 
this involves calculating the efficiency with 
which the transverse electric (TE) and transverse 
magnetic (TM) components have been separated. 
COMSOL™ is based on finite element 
modelling and is chosen for two reasons; firstly, 
because it can handle complex 2-D and 3-D 
geometries and secondly, it can handle the vector 
nature of the fields associated with these 
structures. The objective of the design work 
carried out in this paper is to compare the results 
of a commonly used analytical method with 
those obtained with the FE model of 
COMSOL™. 
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Figure 1. 2-D view of a grating that splits TE and TM 
components into different orders. h,n - height and 
refractive index of the grating, d - period, a/d - fill 
factor, and θB - incident Bragg angle. 
 
 
2. Theory 
 

In a grating with large feature sizes, light is 
diffracted into different spatial locations (or 
orders) that can be derived based on scalar 
theory. When the dimensions of the structure 
become comparable to or less than the 
wavelength of light, the structural details cannot 
be resolved and the number of diffraction orders 
are reduced. With careful design, it is possible to 
create a structure that allows only the 0th order to 
propagate. All higher orders become evanescent. 
In such a case, the structure can even be 
approximated to a homogeneous medium1  of 
some effective index to which Snell's laws can 
be applied; albeit with some special properties. 
The uniqueness lies in the anisotropy of the 
structure which introduces a "form" 
birefringence2. Hence, light is split in two 
different directions, apparently producing orders 
again. This behaviour occurs when the angle of 
incidence satisfies the Bragg condition. Because 
of the polarization sensitivity of a sub-
wavelength grating, the TE and TM components 
separate into two different orders. One of the 
main factors determining the efficiency of this 
separation is the grating height.  
 



3. Use of COMSOL Multiphysics  
 

COMSOL™ Multiphysics 3.5a with 
MATLAB™ offers a great deal of flexibility for 
computing diffraction efficiencies in the far-field 
in addition to the ease and accuracy with which it 
solves for structures of even sub-wavelength 
dimensions. It also offers support in the 
visualization of the polarization sensitivity of 
these gratings.  

 
3.1 The Physical Model  

 
The RF module of COMSOL™ is used to 

simulate the propagation of a 650 nm plane wave 
incident on a simple two-level phase grating. A 
2-D geometry, as shown in Figure 2, is 
constructed to create a cross section of a one 
dimensional grating.  

 

 
 
Figure 2. 2-D geometry describing the various 
domains of the one dimensional binary phase grating 
model. 
 

A special assembly of edges, connecting 
regions 4 and 5, is used to filter out only the 
reflected light into region 5. The incident 
medium will contain the fields that excite the 
model as well as the fields that are reflected from 
the grating; whereas the reflection region will 
have only the reflected light without the incident 

light. To allow for high transmission, the grating 
line widths are taken to be of the same material 
as that of the substrate, which is a glass material 
of refractive index 1.457. The diffracted fields 
that couple out of the grating propagate forward 
into the transmission region. The air domain in 
which the grating is held, is padded in the y-
direction with a special air region called 
perfectly matched layer (PML) of large enough 
thickness so as to avoid any non-physical 
reflections. In the model described above, the 
grating dimensions for the two case studies taken 
up for simulation are as tabulated in Table 1 and 
the thickness of the rest of the sub domains are 
taken to be about 1 micron each. The 
transmission grating described in the paper is 
modelled for these two sets of data; PBS-A for a 
Bragg incidence of 56o and PBS-B for 45o.  

 
Table 1: Parameters used in the simulation, following 
Ferstl et al3 

 

 Grating 

Period,  

d[nm]  

Line 

width, 

a[nm]  

Grating 

height, 

h[nm] 

 (PBS-A) 390 160 790 
 (PBS-B) 460 140 930 

 
 
3.2 The Mathematical Model  

 

The RF module solves for the electric and 
magnetic fields from Maxwell's vector wave 
equation in each node of the finite element 
model.  Hence the governing equation is 
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where k0 = 00  and the symbols have their 
usual meanings. Maxwell's equations are solved 
in all the sub-domains of different materials in 
the model. For our refractive index model, the 
assumptions based on the material properties are 

1r , 0  and 2nr  . Hence (1) reduces 
to 
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where n is the refractive index of the material. 
No electromagnetic loss in the media further 



constrains the index from having an imaginary 
part. A harmonic propagation analysis solves for 
the dependent variables, zE


 and zH


.  

 
3.3 Boundary Conditions 

 
The mathematical model is incomplete 

without adding constraints that actually 
introduce continuity or discontinuity in the 
electric and magnetic field solutions at the mesh 
nodes in the interface between two media.   

PML matches the impedance with its 
neighbouring domain and self absorbs all the 
fields that come into it. This works for a wide 
range of angles of incidence and mimics an 
infinite space in the y-direction as in real space. 

The effect of an infinite grating is achieved 
by the use of Floquet boundary condition. This 
condition mimics the multiple structures that are 
required to accurately model diffraction, saving 
memory and computational time.  Hence it is 
used to flank the model from the sides as shown 
in Figure 3. Floquet harmonics are used to 
evaluate the field in the grating taking into 
account the phase shift that is introduced by the 
structure between the ends along x̂ , which is the 
direction of periodicity. 

 

 
 
Figure 3. Boundary constraints  
 

An "identity pair" of ports for excitation 
ensures the extraction of the reflection spectrum 

that would be required for studying reflection 
gratings. These are two overlapping boundaries 
whose physics is connected by the port boundary 
condition for excitation. The source is excited 
with a linearly polarized light that is a 
combination of TE (electric field along z-
direction) and TM (magnetic field along z-
direction) components. It is assumed that the 
electric field makes 45o with the grating grooves 
so that the incident electric field polarization is 
composed equally of TE and TM components. 
Hence, zE


 and zH


make up the incident hybrid 

field. 
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where  
   545oq          

E0 and H0 are the field amplitudes in air, 
   H0 = E0/η0 

η0 = 377 Ω , is the characteristic impedance of 
air, and kx and ky are the components of the 
incident wave vector.                 

 
A neutral boundary condition was imposed 

on the boundaries, as seen in Figure 3, which 
reflects the out of plane E- and H- fields, though 
it may be argued that strictly such a boundary 
condition is not necessary after a PML.  

All the other interior boundaries should of 
course mandate continuous solutions. Most 
importantly, the far-field is user-defined in a 
variable, say 'EFar', at the transmission and 
reflection ends labelled as 'Far-field' in Figure 3. 
The x, y and z components of the electric field at 
the far-zone are computed in EFarx, EFary and 
EFarz. Though the far-field variables are defined 
in these boundaries, a surface plot of these 
variables over the entire domain gives a sense of 
the direction of the diffraction orders. 

 
3.4 Finite Element Model 

 
Meshing requires care especially when there 

are periodic conditions involved. The mesh 
nodes of the Floquet edges are the exact copies 
of their phase shifted counterparts. To resolve 
the wavelength finely enough with the mesh, the 
maximum element size of the triangular mesh is 
chosen as one-tenth of the wavelength in the 



medium. The statistics related to the mesh are 
given in Table 2. 
 
Table 2: Mesh statistics  
 

 PBS-A PBS-B 

Element shape Triangular Triangular 
Number of 
Mesh elements 

 
23114 

 
27084 

Number of 
degrees of 
freedom 

 
93420 

 
109400 

Minimum 
element quality 

 
0.8561 

 
0.8544 

Maximum 
element size in 
air domain 

 
65 nm 
 

 
65 nm 
 

Maximum 
element size in 
glass domain 

 
43 nm 

 
43 nm 

 
The analysis is carried out for a sweep of 

incident angles from 0o to 90o . We also did a 
parametric analysis to observe the trend of 
polarization sensitivity and diffraction efficiency 
at Bragg incidence and at other incidence.   

The direct (PARDISO) linear solver is used. 
The calculation time is about 25 minutes on a 2.4 
GHz processor with 2GB RAM. 

 
 

4. Results 

 
The hybrid incident plane wave that splits 

into the TE and TM components along different 
directions is clearly observed in the surface plots 
shown in Figures 4 and 5. The plots show the 
electric field resulting from  a beam  incident at 
the Bragg angle. We observe, from Figure 4, that 
the TE component is entirely transmitted and 
diffracted; while the TM component, in Figure 5, 
is both reflected and transmitted into the 
corresponding 0th orders.  

Therefore, a linearly polarized wave incident 
at Bragg angle on a grating with sub-wavelength 
period would selectively get diffracted into a 
particular direction depending on whether it was 
a TE or TM wave. 

 

 
 

Figure 4. Direction of far field for TE component  at 
Bragg incidence for PBS-B 

 

 
 

Figure 5. Direction of far field for TM component  at 
Bragg incidence for PBS-B 

 



This is shown, in Figures 6a and 6b, for the 
design PBS-A in the far-field transmission zone. 
Similar curves are obtained for PBS-B. Note that 
the Bragg angle for PBS-A is 56o  and for PBS-B 
is 45o. To get the diffraction efficiency of an 
order, an integration of the predefined 
COMSOL™ variables, normEFar2 or 
abs(EFarz)2, over sections of the far-field cross 
section were evaluated. The command 
"meshintegrate" is used in the FE model object 
in MATLAB™ to perform an integration over an 
arbitrary cross section. 

 

 
(a) 

 

 
(b) 

 
Figure 6. Transmitted far E-field distribution for PBS-
B design at Bragg incidence of 45o with plots of (a) 
TE component and (b) TM component 
 

The far-field cross sections, shown in Figures 
4 and 5, are taken at a suitable y distance  from 
the grating such that  arc-tangent of the (x/y) 
covers diffraction angles between -90o and 90o. 
This calculation of the y distance is depicted in 
Figure 7.  

 

 
 
Figure 7. Optimum y distance such that 

o
d 85(max) q at which far-field power is calculated 

 
The far-field power thus calculated is 

normalized with respect to the power in the 
transmission spectrum in the entire cross section. 
Table 2 compares the diffraction efficiencies 
obtained from the Ferstl model3 with those 
obtained from our model.   

   
Table 2: Comparison of theoretical and simulated 
diffraction efficiencies for PBS-A and PBS-B designs 
evaluated at Bragg incidence 
 

 Ferstl
3 

COMSOL 

PBS-A   

TM 0 99.7% 95% 
TE -1 93.6% 92.9% 
PBS-B   
TM 0 95% 89.1% 
TE -1 92% 92.3% 

 

5. Conclusions 
 

The aim of this paper was to understand how 
efficiently and easily,  COMSOL could be used 
to study sub-wavelength structures. This was 
tested by taking already reported structures and 
modelling them in COMSOL. In general, the 
way to use COMSOL would be to initially 
design the structure, i.e., calculate its dimensions 
using an existing diffraction model (e.g., modal 
method4), and then analyse the field patterns 
using COMSOL.  

Our results show that calculations of 
diffraction efficiencies of sub-wavelength 
gratings obtained using COMSOL were found to 
match earlier results. Hence, COMSOL can be 



relied upon for vector models such as sub-
wavelength gratings and for far-field 
calculations. Also, the model can be extended to 
complex geometries where the mathematics 
becomes more complex and the field patterns 
harder to visualize.      
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