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Abstract: In this paper it is shown how the equivalent 
circuit parameters of a MEMS resonator can be simply 
obtained from an eigenfrequency simulation. 
Additionally, it is demonstrated that the Q-factor as a 
result of support losses in a MEMS resonator can be 
determined using a matched boundary layer. The 
method is applied to calculate the frequency dependent 
admittance of a diamond disk resonator. Results agree 
well with measurements and analytic results. 
Comparison to a frequency response analysis 
establishes the validity of the method and shows that it 
results in a large reduction of the simulation time. 
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1. Introduction 

 
Because the Q-factors of mechanical resonators can 

be much higher than that of electrical resonators made 
from coils and capacitors, they are very interesting 
components for constructing oscillators and filters. 
However to use these mechanical resonator elements in 
an electrical circuit, an electromechanical transducer is 
needed to convert electrical energy to the mechanical 
domain.  

Developments in microsystem technology have 
enabled the use of electrostatic actuation forces across 
sub-micron vacuum gaps to accomplish this energy 
conversion in micro-electromechanical systems 
(MEMS) resonators. Main advantages of these 
resonators are their integration in silicon, their small 
size and the possibility to control their resonance 
frequency by lithographic mask design. 

Figure 1 shows a cross-section of a 
micromechanical disk resonator [1], which will be used 
as an exemplary MEMS resonator in this paper. The 
axially symmetric structure consists of a diamond disk 
with height H and outer radius R, which is fixed to a 
silicon substrate by a polysilicon stem with radius a. 
The acoustic mismatch between the diamond disk and 
the silicon stem increases the Q-factor of the resonator 
[1]. The disk is actuated by a radial electrostatic force 
which is generated by applying a voltage on the 
actuation electrode with area Aact, which is separated 
from the edge of the disk by a uniform gap g. 

For making circuit designs using MEMS 
resonators, designers need an equivalent electrical 
circuit that describes their frequency dependent 
characteristics. An obvious way to determine the 

frequency dependent admittance Y(�) of a MEMS 
resonator is using a frequency response analysis. In this 
type of analysis, an actuation force of a frequency � is 
applied to the surface of the resonator and the 
amplitude response is simulated. Because the Q-factor 
of MEMS resonators is usually high, this method 
requires a high density of frequency points to resolve a 
single resonance of the resonator. Moreover, fitting of 
Y(�) is required to extract the equivalent circuit 
parameters.  

In this paper an alternative method is described to 
directly extract the circuit parameters from an 
eigenfrequency analysis. The method will be applied to 
the resonator in figure 1. 
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Figure 1 Cross-section through the center of a diamond disk 
resonator, which is axially symmetric around the z-axis. 

2. Single degree of freedom equations 
 

Let us first consider a MEMS resonator system 
with only one mechanical degree of freedom x. Its 
equation of motion is identical to that of a drive 
harmonic oscillator: 
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Assuming that the steady-state displacement can be 
written as: 

tjextx ωω)(Re)( =  (2) 
Substitution in (1) gives: 
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The electrostatic force is given by the equation: 
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To be able to perform a linear analysis, it will be 
assumed that the maximum displacements are very 
small compared to the gap size (x<<g), that the parallel 
plate approximation C=Aact�0/(g-x) is valid (g<<2�R 
and g<<H) and that the dc bias voltage is much larger 



than the ac voltage (Vdc>>Vac). The ac component of 
the electrostatic force as a result of a voltage 
V(t)=Vdc+Vace

j�t is then given by: 

acac
dcact

ac VV
g

VA
F ηε == 2

0  (5) 

From the equivalence between the mechanical power 
Pmech=Fac�dx/dt and electrical power Pe=Vac�iac the 
admittance Y of the circuit can be calculated: 
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Substituting equations (3) and (5) in (6), we find that 
the admittance of the one-port small ac-signal MEMS 
resonator is given by: 
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An equivalent electrical circuit with the same 
frequency dependent admittance as equation (7) is 
shown in figure 2 [2]. The ideal transformer with turns-
ratio 1:� represents the conversion from electrical to 
mechanical energy. The equivalent mass mi, spring 
constant ki and damping bi can be represented by a coil, 
capacitor and resistor respectively. In the mechanical 
part of the circuit voltages are identical to forces and 
currents to speeds. The voltage at node x is equivalent 
to the position x. Even if the resonator is not moving, a 
stray capacitance Cw=Aact�0/g across the gap is present 
across the actuation gap.  
Equation (7) was derived for a MEMS resonator with a 
single mechanical degree of freedom. A resonator with 
N degrees of freedom will have N eigenmodes. For 
each eigenmode i of the resonator (i=1,2,…,N) a 
parameter set mi, ki and bi exists. The complete 
equivalent circuit consists of these N resonant circuits 
connected in parallel. Therefore the total frequency 
dependent admittance Y(�) of a MEMS resonator with 
N degrees of freedom can be written as: 
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In the following sections it will be described how the 
parameters mi, ki and bi can be simply obtained from 
the eigenvalue and the surface and volume integrals of 
the eigenmodes. This method is based on the normal-
mode method of dynamic analysis [3]. 
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Figure 2 MEMS resonator small ac signal equivalent 
electrical circuit. 

3. Eigenfrequency analysis 
 

We consider a resonator with many mechanical 
degrees of freedom. For modes with a high Q-factor, 
the mode-shapes do not depend much on the 
electrostatic force [2]. Therefore it is possible to extract 
mi, bi and ki by solving the partial differential equation 
describing the elastic system for Fac=0, which is called 
the translational equation of motion [4]: 
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Here c represents the stiffness tensor, � is the mass 
density and u(r,t) is the particle displacement field. 
Solutions of equation (9) have a time dependence given 
by: 
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Substituting this in equation (9) we obtain the 
eigenvalue equation: 
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The COMSOL finite element package is used to 

solve equation (11) in an eigenfrequency analysis, to 
obtain the eigenmodeshapes ui(r) and the 
corresponding complex eigenfrequencies �i=2� fi.  

 
4. Definition of the displacement xi 

 
To reduce this set of eigenmodes and eigenvalue 

solutions to a set of parameters mi, bi and ki, 
postprocessing of the solutions is required. First of all, 
a proper definition of the equivalent displacement 
parameter xi needs to be defined. To choose a proper 
definition, we note that the electrostatic work in the 
equivalent circuit should equal the work in the system 
with many degrees of freedom. Because work is given 
by the dot product between force and displacement 
vectors, the electrostatic work We done by the 
electrostatic actuator equals the area integral over the 
dot product between electrostatic pressure and 
displacement Pe�ui where Pe=Fac/Aact. 
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The area integral should be taken over the surface of 
the resonator that is facing an actuation electrode. In 
the parallel-plate approximation the electrostatic force 
is always perpendicular to the actuation surface. 
Therefore equation (12) is satisfied by defining the 
equivalent displacement xi as: 
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Where n is the unit vector outward perpendicular to the 
surface.  
 
 



The transduction factor � is given by equation (5): 
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Note that this equation for � does not depend on the 
eigenmode-shape. � is therefore identical for all 
eigenmodes i. 
 
5. Parameter extraction of ki and mi 

 
The stored energy Estored is a sum of the strain 

energy and the kinetic energy. The maximum kinetic 
and strain energy in the single degree of freedom 
system are given by Ekin,max=½mi|�ixi|

2 and 
�strain,max=½ki|xi|

2 and are both equal to Estored. The 
solutions of ui(r) of equation (11) obey: 
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The strain energy density is given by Ws=½���, where 
� and � are the local strain and stress tensors. V is the 
total simulated volume. The absolute values of the two 
energy integrals in equation (15) represent the stored 
energy Estored. The equivalence between the stored 
energy in the single and many degree of freedom 
systems allows the extraction of the parameters ki and 
mi using the following equations: 
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 (16) 

 
Note that since xi should be calculated from (13), the 
values of ki and mi will depend on the location of the 
actuation electrodes. 
 
6. The Q-factor in MEMS resonators 
 

Calculation of the damping parameter bi is directly 
related to the calculation of the Q-factor by the 
equation: 
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However, calculation of the Q-factor from first 
principles is difficult because there are many different 
possible paths for mechanical energy dissipation. The 
most relevant mechanical loss sources in MEMS 

resonators are thermoelastic damping (TED), support 
losses, gas damping and damping due to surface 
imperfections, adsorbents or oxidation. 

Duwel et al. [5] descibe a method to calculate the 
Q-factor as a result of TED using an eigenfrequency 
analysis. Their analysis shows that TED is an important 
loss mechanism for flexural modes. However 
comparison with measurements shows that for 
longitudinal and bulk modes other damping 
mechanisms seem to dominate. If resonators are 
operated at low pressures, gas damping is not limiting 
their Q-factor.  

It seems that support losses are often the factor 
limiting the Q-factor of MEMS resonators. Support 
losses are caused by the generation of traveling waves, 
which transport energy from the resonator, via the 
supports and anchors, to the substrate. Because the 
waves are not localized near the resonator, their energy 
can essentially be considered as lost and is eventually 
converted to heat after being absorbed. The Q-factor of 
MEMS disk resonators as a result of support losses was 
both calculated analytically [6] and using a finite 
element method (FEM) calculation with perfectly 
matched layers (PML) [7]. 
 
7. Matched layers 

 
The method we use to calculate the Q-factor as a 

result of support-losses using matched layers in 
COMSOL is similar to that presented by Bindel et al. 
[7].  Because it is unfeasible to model the full substrate, 
a model boundary is defined and it is assumed that the 
energy of all waves that cross this boundary are lost. 
To accomplish this absorption in a finite element 
calculation, matched layers are needed. Ideally these 
layers do not reflect acoustic waves and thus absorb all 
incident acoustic power. In the frequency response 
analysis mode of COMSOL 3.3a, perfectly matched 
layers (PML) are available for this purpose. However 
in the eigenfrequency analysis mode they are not 
implemented. Therefore we define simplified matched 
layers (ML). These ML layers are not as effective as  
PMLs because they only match perfectly for normal 
incident waves. However, as will be shown in section 
10, Q-factors can be calculated within a few percent 
accuracy using such matched layers. 

The matched layer consists of an artificial material 
with specifically chosen material parameters, such that 
it has a reflection coefficient R=0 for normal incident 
acoustic waves. Moreover, the acoustic waves that 
enter the ML, should be rapidly attenuated to ensure 
that they are absorbed before leaving the ML. This can 
be accomplished by a negative imaginary part of the 
wavevector in the ML (Im k’<0). 

The reflection coefficient of an acoustic wave 
between two media is given by [4]: 
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Where Z’ is the acoustic impedance of the wave in 
the ML and Z is the impedance in the isotropic medium 
from which the wave is incident. Clearly Z’=Z is 
needed for zero reflection. For compressional waves 
Zcompr=[�E(1-�)/((1+�)(1-2�))]1/2 and for shear waves 
Zshear=[�E/(2(1+�))]1/2, where E is the Young’s 
modulus and � the Poisson ratio. The wave vector k of 
the acoustic wave is given by 

Zk /ωρ=  (19)        
For a wave traveling through the ML in the positive 

x-direction the particle velocity is given by 
v(x,t)=v0e

j(�t-k’x). For k’=-j�k the real part of the particle 
velocity will be proportional to e-�kx and will attenuate 
exponentially as required (Re �>0). The conditions 
Z’=Z and k’=-j�k can be satisfied by defining the ML 
material properties E’,�’ and �’ as: 
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�,� and � are the material parameters of the material 
from which the acoustic wave is incident on the ML. 
The condition Z’=Z is satisfied because �E=�’�’ and 
�=�’. k’=-j�k follows from equations (19) and (20). 

Note that the substitution (20) attenuates waves in 
all directions and at all frequencies, for example a wave 
traveling through the ML in the negative-x direction 
will be attenuated for increasing negative x.  

As the ML works best for normal incident waves, 
the anchor is considered as a point source of acoustic 
waves and the ML boundary is oriented as a circular 
(2D) or spherical (3D) shell centered around the 
anchor. Moreover the ML should be thick enough to 
reduce the wave amplitude of the waves sufficient 
before they reflect from its outer boundary.  

The ML can also be employed for wave absorption 
from anisotropic materials with an elasticity matrix c. 
In this case the ML should be given an anisotropic 
elasticity matrix c’=jc/� and �’=-j��. For normal 
incidence, the reflection R is still zero and exponential 
attenuation of the wave in the ML still occurs. This can 
be understood from the fact that for any plane acoustic 
wave the acoustic impedance Z does not change if �c 
stays constant, whereas the wavevector obeys k=��/Z. 

It is even possible to choose the material properties 
of the matched layer such that it will act as a PML 
[7,8]. Although this procedure is straightforward, it is 
much more elaborate than the transformation (20). 

Because the material properties of the ML are 
complex-valued, the eigenvalues and eigenfrequencies 
�i will also become complex-valued, reflecting the 
exponential damping of the displacement field 
amplitudes in equations (2) and (10) with time in the 
absence of an excitation force Fac. By substituting 

equation (2) in equation (16) we see that the total 
stored energy becomes time dependent: 
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The Q-factor is defined as 2� times the ratio 
between the stored energy Etot and the dissipated 
energy per period –dEstored/dt*T. The period 
T=2�/Re(�i). Therefore: 
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Using equation (17) we can thus calculate bi. 
The equations in sections 4 and 5 remain valid for 

damped systems with complex eigenvectors and 
eigenvalues within the limits discussed in [3]. Because 
the absolute signs in equation (16) are outside the 
integral, the energy of traveling waves is not included 
in the stored energy integrals. 
 
8. Application example 
 

As an example of the method described above, the 
parameter extraction for the MEMS radial disk 
resonator in figure 1 will be performed. In figure 3 the 
layout of the resonator and its substrate is given for 
R=11 �m, H=3 �m, h=0.8 �m and a=0.8 �m. The 
radius of the silicon substrate is 20 �m and the outer 
radius of the ML is 40 �m. The materials are assumed 
to be isotropic. The material parameters of the disk, 
stem and substrate are respectively given by: Ed=1061 
GPa, �d=3440 kg/m3, �d=0.12, Es=150 GPa, �s=2330 
kg/m3, �s=0.22, Es=130 GPa, �s=2330 kg/m3, �s=0.28. 
The material parameters of the matched layer are 
determined by applying transformation (20) on the 
substrate parameters, with �=3. The mapped mesh 
consists of 3168 quadrilateral quadratic Lagrange 
elements. 
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Figure 3 Layout of the simulated diamond disk resonator 
with axial symmetry around the z-axis. 



By solving the eigenfrequency problem, the first 
radial bulk-mode is found at 489.27 MHz. The total 
displacement mode-shape of the resonator is shown in 
figure 4. The extension of the disk creates stress in the 
stem, which generates acoustic waves in the substrate. 
In figure 5 the same mode-shape is plotted over a 
smaller displacement range. Spherical substrate waves 
are generated by the stem of the resonator. A variation 
of the phase of the solution shows that these traveling 
waves propagate outward and are absorbed by the ML. 
Inside the matched layer the wave amplitude decays 
exponentially as expected. 
 

 
Figure 4 Total displacement in the first radial bulk-mode of 
the disk resonator at 489.27 MHz. 

 
Figure 5 Acoustic substrate waves generated by the first 
radial bulk-mode of the disk resonator. 

9. Q-factor comparison 
 

With a script, the Q-factor of the first radial bulk-
mode of the diamond disk resonator is calculated from 
the complex eigenfrequency using equation (22) for 56 
different disk radii R between 7.5 and 13 �m. The 
results from this FEM calculation are shown in 
figure 6. In the same figure the measured Q-factors 
from [1] and the analytical calculated Qs from [6] are 
plotted for R=8,10,11 and 12 �m. The FEM 
simulations show a good agreement with the analytic 
results from [6]. The difference with the measured Qs 

is larger, this can be due to process uncertainties which 
result in slight deviations of the actual stem size, as 
was also discussed in [6]. The lines which represent the 
FEM simulations in figure 6 show a slight periodic 
variation in Q as a function of frequency. The period of 
this variation depends on the radius of the silicon 
substrate in figure 3. Therefore the variation is 
attributed to a small mismatch between the substrate 
and the ML, which will affect the effective acoustic 
impedance presented by the substrate to the resonator.  

The Q-factor for the second radial bulk-mode is 
also calculated. For R=11 �m and a=0.8 �m we find for 
the second radial bulk-mode Q=1,900, which is about a 
factor 5 lower than the measured and calculated Q-
factors of around 10,000 in [1] and [6]. It is unclear 
what the cause is for this large difference. 
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Figure 6 Q-factor and resonance frequency of the first radial 
bulk-mode of the diamond disk resonator with radius R 
between 7.5 and 13 �m. FEM simulations (solid 
lines+symbols) from this work are compared to the results 
from [1] and [6] for R=8,10,11 and 12 �m.  

10. Frequency response and PML 
 
To compare the results obtained from the 

eigenfrequency analysis to a frequency response 
analysis, the same structure with ML described in 
section 8 is analyzed in the frequency response mode. 
Using equation (14) an actuation pressure Vac�/Aact is 
applied to the side of the disk in the r-direction. The 
displacement xi as a function of frequency is 
determined using equation (13). From equation (6) it is 
seen that iac=j��xi. Thus the admittance is determined 
from the frequency response mode using 



Y(�)=iac/Vac=j��xi/Vac. The same analysis is also 
performed with the ML replaced by a cylindrical PML. 

These frequency response results are compared to 
the calculation of Y(�) using equation (8), where ki,mi 
and bi are calculated using equations (16) and (17). Cw 
is kept to be zero. The three admittance curves are 
shown in figure 7. The agreement between the 
calculation in eigenfrequency mode and frequency 
response mode is excellent, which confirms the 
correctness of the described procedure for calculating 
the admittance from the eigenmodes and 
eigenfrequencies. Analyzing the admittance curves we 
find that the Q-factor determined with the ML is 
30,068 whereas the Q-factor as determined with the 
PML is 29,006. The lost energy is proportional to 1/Q. 
If we assume that the PML is ideal we can thus 
conclude that the ML absorbs QPML/QML=96.5% of the 
incident energy. If more accurate values for the Q-
factor are needed it is to be recommended to use PML 
boundaries. This is especially true if the acoustic waves 
are incident on the ML surface at more grazing angles 
than in this example. 

Comparison of the simulation times of the 
eigenfrequency analysis and frequency response 
analysis shows that it takes a factor 60 less simulation 
time to calculate 1 eigenvalue than to perform a 
frequency response analysis at 100 frequencies. Even if 
we consider that the shape of the curve might be 
determined using less frequencies, the eigenfrequency 
analysis will run in a significantly shorter simulation 
time. 
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Figure 7 Admittance of the first radial bulk-mode of the 
diamond disk resonator with R=11 �m and a=0.8 �m. 
Equation (8) with ML is compared to the frequency response 
mode analysis with ML and PML. Vdc=2.5V, g=90 nm [1]. 

11. Conclusions 
 
This paper presents a simulation method to 

determine the frequency dependent admittance of a 
MEMS resonator by postprocessing of the solutions a 
FEM eigenfrequency simulation. Support-losses are 
modeled using a matched layer (ML) to represent the 
absorption of acoustic waves in the substrate. The 
method is applied to a MEMS diamond disk resonator 
with varying radius and stem diameter. Calculated Q-
factors agree well with measured and analytic values. 
A comparison with a frequency response analysis 
confirms the validity of the method and shows that the 
ML absorbs about 96.5% of the incident acoustic 
energy. Moreover it shows that the eigenfrequency 
analysis takes considerably less simulation time. 
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