
Numerical issues regarding distributed constraint implementation 

Physics of the Problem: 

A 3D block of hydrogel is undergoing a continuous contraction and subsequent recovery 

processes due to molecular motor activities inside the gel.  Hydrogel is an agglomeration of 

cross-linked polymer network and water. Assuming incompressibility for both polymer and 

water, the contraction of the hydrogel happens due to water outflow, while recovery is due to 

water inflow. Molecular motor activities shorten the polymer chains and increases the cross-

link density. These activities modify the chemical potential of water (relative to equilibrium) 

and drive the water to flow out/in - corresponding to contraction/recovery of the gel. 

 

Modeling of the problem: 

Model PDE/ODEs are in Lagrangian format, where hydrogel with no water (dry polymer 

network) is considered as the reference state. Three different processes are modelled: (1) 

Shortening/recovery of polymer chains, (2) Increment/recovery of polymer cross-link density, 

and (3) Contraction/recovery of hydrogel. 

1.0  Shortening/recovery of polymer chains 

We consider a domain ODE to model the shortening/recovery of polymer chains, as follows:  
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Here, 𝑤 (0 < 𝑤 ≤ 1) represents shortening/recovery of the polymer chains that depends on 

the input power density 𝑃. 

 𝑢𝑖 (𝑖 = 1, 2, 3) represent the contraction/recovery of the gel in three principal directions. 

𝑁𝑘𝑇 is the polymer stiffness, 𝜏(= 𝐿2/𝒟 ) is the time scale, 𝐿 being the length scale, 𝒟 being the 

diffusion constant of water. 

1.1 Modeling of Power density, 𝑷(𝒙, 𝒚, 𝒛, 𝒕) 

We model the following aspects: 

a) We model power density as spatially inhomogeneous, 𝑃(𝑥, 𝑦, 𝑧), with a 3D random 

distribution function (Fig.1b). 

b) We consider an analytic periodic function to model our power cycle, 𝑃(𝑡), (Fig.1c). 

c) Positive 𝑃 cycle (Fig.1c): polymer chain shortening (0 < 𝑤 < 1) for 0.5s as per Eq. (1.1). 

d) Negative 𝑃 cycle (Fig.1c): polymer chain recovery (𝑤 = 1) as per Eq. (1.1);  

e) Recovery intended to be instantaneous (different than 0.5s as depicted in Fig.1c); 

controlled via introducing “Events” interface into the model. 

f) When 𝑃 = 0, no shortening of polymer chains as per Eq. (1.1). 



g) We model power cycles as spatially non-synchronous by subdividing the domain block 

into sub-domains (i.e. cubes) (Fig. 1a) and by assigning different phase values, 𝛿, to 

different sub-domains. 
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Fig. 1a: Sub-divided gel block. Fig. 1b: 3D random function. Fig. 1c: Power density cycle (𝛿 = 0). 

 

1.2 “Events” interface: Enforcing distributed inequality constraint, 𝒘 ≤ 𝟏 

a) We define “Events” for each sub-domain to control the power density, as follows: 

(i) When (max(𝑤) ≤ 1 && 𝑃 > 0) || (max(𝑤) < 1 && 𝑃 < 0) || (max(𝑤) ≥

1 && 𝑃 > 0): Power density is non-zero (𝑃 ≠ 0). 

(ii) When (max(𝑤) ≥ 1 && 𝑃 < 0): Power density is zero (𝑃 = 0). 

b) Drawbacks with “Events” interface: for each sub-domain, pointwise recovery (𝑤 = 1) is 

incomplete, as we use “max()” operator. 

c) “Events” interface can be eliminated from the model if the distributed inequality 

constraint is enforced via Lagrange multiplier based method as described in a COMSOL 

blog: https://www.comsol.com/blogs/methods-for-enforcing-inequality-constraints/. 

We have been trying to adopt this method in our model but failed. Any help in this 

regard would be highly appreciated. 

2.0 Increment/recovery of polymer cross-link density 

We consider a domain algebraic equation to model the increment/recovery of cross-link 

density, as follows:  

𝑛1 = 𝑛0 + 𝑛𝑚[1 − exp(−𝑘𝑚𝑡)]                            [2.1] 

Here, 𝑛1(= 𝑁Ω/𝑁𝐴) represents the increment/recovery of the cross-link density. 𝑁 being 

cross-link density (dimensional), Ω being the molar volume of water and 𝑁𝐴 being the 

Avogadro‘s number. 

𝑛0 is the initial cross-link density, 𝑛𝑚 being the molecular motor density, and 𝑘𝑚 being the 

molecular motor attachment rate. 

https://www.comsol.com/blogs/methods-for-enforcing-inequality-constraints/


(i) We model 𝑛𝑚 as spatially inhomogeneous using the same 3D random distribution 

function as shown in Fig. 1b.  

(ii) For each sub-domain, 𝑛1 evolves from 𝑛0, when 𝑃 = 0; 𝑛1 recovers to 𝑛0, when 𝑃 ≠

0. 

3.0 Contraction/recovery of hydrogel 

We model this process by linking fluid flow to the contraction/recovery of the gel. We consider 

the species conservation equation for water flow, as follows: 
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Where, 𝐶 is molar concentration of water; The water flux, 𝐻𝑖, is given by the Fick’s law, as 

follows: 
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Here, 
𝜇
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 is chemical potential of water. The swelling ratio, 𝐽, is defined as follows: 
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Combining Eq. (3.1) - (3.3) and non-dimensionalization yields, 
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Simplifying further into components yields another set of model equations to be solved, as 

follows: 
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The chemical potential of water, 
𝜇

𝑅𝑇
, is linked to the molecular motor activities, as follows: 
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Here, 𝜏𝑣(=
𝜂

𝑁𝑘𝑇
) is the viscous time scale; 𝜂 being the water viscosity. 



Problem setup: 

Eqns. (1.1), (2.1), (3.4) and (3.5) are the model equations to be solved. Five equations for five 

unknowns: 𝑢1, 𝑢2, 𝑢3, 𝑤 and 𝑛1. For our problem, we solve them for a 3d block of gel (see 

Fig.1a) subject to the following boundary/initial conditions: 

(i) Top boundary surface is subjected to the constraint, which has a term with time 

derivative (red marked), as follows: 
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(ii) Bottom boundary surface is fixed:  

𝑢1 = 𝑢2 = 𝑢3 = 𝑢0;  
𝜕𝑢1

𝜕𝑋1
=
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= 0. 

(iii) Left-right and front-rear boundary surfaces are subject to periodic conditions. 

(iv) Initial conditions: 𝑢1 = 𝑢2 = 𝑢3 = 𝑢0; 𝑤 = 1; 𝑛1 = 𝑛0. 

 

Issues: 

(i) We cannot solve the model due to the inclusion of time-derivative term in the 
boundary constraint [Eq. (3.6)]. We were able to solve without this term. Could 
you please help us to solve the problem with the time-derivative term? 
 

(ii) We want to omit the “Events” interface from our model. To do that we need to 
enforce the distributed inequality constraint, 𝑤 ≤ 1, using Lagrange multiplier 
based method or any other method as suggested by the COMSOL blog: 

https://www.comsol.com/blogs/methods-for-enforcing-inequality-constraints/. 

Could you please help us to implement the domain inequality constraint using this 

Lagrange multiplier-based method? 

 

Your Kind help would be highly appreciated!! 
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