Far-field Properties^{1,2}. Extinction spectra are calculated by integrating the time-averaged extinction Poynting vectors S_{ext} (i.e. electromagnetic power flow) over an auxiliary surface enclosing the Au NP dimer or the isoalted NP:

$$\boldsymbol{S}_{ext} = \frac{1}{2} \operatorname{Re} \{ \boldsymbol{E}_{inc} \times \boldsymbol{H}_{sca}^* + \boldsymbol{E}_{sca} \times \boldsymbol{H}_{inc}^* \}$$
(1)

$$C_{ext} = \frac{-\iint S_{ext} dA}{|\mathbf{W}_{inc}|} \tag{2}$$

where E_{inc} , E_{sca} , H_{inc} and H_{sca} are the incident and scattered electric and magnetic field respectively, C_{ext} is the extinction cross section, $|\mathbf{W}_{inc}| = \frac{1}{2} c \varepsilon_0 E_0^2$ is the power flow per unit area of the incident plane wave, E_0 (set at 1 V/m here) is the modulus of E_{inc} , c is the velocity of light and ε_0 is the permittivity of vacuum.