[ ] [ ]
APPLIED MINIATURISATION LABORATORY

Electrical and Computer Engineering Research Facility

Canada

Political Regions

Optimization of Thin Film
Heater/Sensor Design for Miniature
Devices Using Finite Element Analysis

Viet N. Hoang, Govind V. Kaigala, Christopher

University of Alberta, Edmonton, Alberta J. Backhouse

Femlab-2005, Boston *




Need for thin film resistive heaters

* Compatible with microfluidic devices.

e Standard semi-conductor fabrication

procedures.

* Very low power consumption.
* Rapid change in temperature
— both heating and cooling.

 Low thermal mass.

* Precision localized heating.
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Peltier elements:
3-5 °C /second
Thin film resistive

heaters:
20-50 °C/second
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Aims and objectives

* Develop a paradigm for thin-film resistive
heaters to derive rules for design.

* Parametric study to define the temperature
uniformity of the resistive heaters.

 Simultaneous heating and temperature
sensing capabilities.

* Precision temperature stability.
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Applications

* Microfluidic devices for practical medical
diagnosis applications.

* Require complex bio-chemical reactions to
be catalyzed at precision temperature
environment.

* Low-power, portable, economical and
localized heating applications.
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Principle of resistive heating

Involves passing a direct current through the film. The power
generated due to the resistance 1s calculated by Ohm’s law.
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It 1s assumed that almost all the electrical power generated 1s
dissipated into heat.
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T is a function of location and time, p is the mass density of the material.
Qgen 18 the heat generated per unit volume C 1s the specific heat of the material.

K 1s the thermal conductivity of the material
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Need for finite element analysis

* Not all of the power dissipation 1s uniform.

e Minor variations of the heat-flux path generates
non-uniformities.

* Temperature uniformity 1s a complex function of the
geometry and environment of the thin-film heater.

First principles modeling would be infeasible!
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Geometry of representatlve chip

'PDMS Boundary Conditions
| _1__ 8mm thick | g

eNatural convection and radiation on
top surface.

*Constant Room Temperature on the
sides.

*Thermal insulation on the bottom
surface.

Borofloat'G'I'as_s.--' -

1. 1mm thick 12mm

Material properties uséd in FEA simulations

Glass 1.11 830 2200
PDMS 0.18 1100 1030
Water 0.58 4187 1000
Platinum 72 133 21500
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Calibration experiments

Least squares method
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Dependence of resistance on temperature for
platinum thin film heater

Differs from bulk materials
Resistively = f(temperature)
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Validation Experiments — approach 1

For non-optimized heaters testing was done - Apply a known
current and measure the resal ting voltage
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Comparison of simulated and actual measured

voltages
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Validation experiments — approach 2

Time=300 Slice: T-273

Stmulation IR 1image of actual chip
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Simulation outcome with different heater
geometries

Heater A Heater B Heater C Heater D
Max 996 Max: 1085 Max: 1099
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Single ring heater/sensor geometry

Chamber | Heater/sensor ring
(located on top surface W (located on bottom surface
of glass) l of glass)
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Environment

* General heat transfer (htgt) mode of the heat
transfer module was used to simulate the
heat transfer.

« Lagrange quadratic elements
* 200K -300L dofs.

* The metal film being very thin were
modeled using the shell mode 1n 2D (shell
conductive media DC).
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Parametric study

Primarily the temperature dependency i1s a
complex function of -

(a) Electrode pad connection width (x).
(b) Proximity of chip edges (d).

(c) Chamber height (h).

(d) Heater radius (R).

(¢) Material used to fabricate the chip.
(f) The temperatures to which the chip 1s
heated.
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Requirement-1: Temperature
uniformity of the heating/sensing
element

(a) Electrode pad connection width (x).
(b) Proximity of chip edges (d).

Help avoid using separate elements for heating and sensing!
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Effect of electrode pad connection width (x)

x=0.6mm

Heater Temperature (°C)

0.004 0.006 0.008
Arc Length Along Heater (m)

7777777777

>

“cold spot’

Optimum width gives =~

niform temperature
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Effect of proximity of the chip edges (d)

<o d=10mm; heat fluxbie

If edges are too close,
heater temperature
distribution very
sensitive to external
boundary conditions.

. d=10mmu5ua|bc

... 9=4mm, heat fluxb.c. . .

o

Heater Temperature (°C)

d=;4mm. usual b.c.

0.004 0.006 0.008
Arc Length Along Heater (m)

Max: 7.1
97
96
35

120

92

L.

L.

Usual boundary conditions All boundary conditions are heat flux

d =4 mm =
=4
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Requirement-1I: Temperature
uniformity chamber

(c) Chamber height (h).
(d) Heater radius (R).

Uniform temperature might enhance uniform reaction
progression within the fluidic chamber!
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Effect of chamber height (]

)

(°C)

Shorter chamber gives better
temperature uniformity in the
z-direction of the chamber

Chamber Temperature

0z 0.4 0.6& D‘E
Arc Length Along Height of Chamber (mm)

r=1.4mm h-=
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Effect of heater radlus (R)

R25mm :
24k T

R=3.0mm

Better temperature uniforrhity in
radial direction for larger heater |

Chamber Temperature (°C)

\
" m\\ ii\

R=3 mm

)‘

Lar

0.2 0.4 0.6 08
Arc Length Along Radius of Chamber (mm)

R=2mm
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Summary

= Pt thin films useful for catalyzing many bio-chemical
reactions requiring precision temperature.

» Heater and the temperature sensing element the same, hence,
less 1nterconnects facilitate scaling for high throughput
applications.

» Low power, localized heating elements in place that forms a
practical and portable diagnostic assay.

= Design such that no additional bio-compatible layer 1is
required; heat flow engineered such that non-contact heating
with bio-fluids is efficiently possible.
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