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Abstract

A penalty finite element analysis with bi-quadratic elements is performed to investigate the influence of uniform and non-uniform heating of
bottom wall on mixed convection lid driven flows in a square cavity. In the present investigation, bottom wall is uniformly and non-uniformly
heated while the two vertical walls are maintained at constant cold temperature and the top wall is well insulated and moving with uniform
velocity. A complete study on the effect of Gr shows that the strength of circulation increases with the increase in the value of Gr irrespective
of Re and Pr. As the value of Gr increases, there occurs a transition from conduction to convection dominated flow at Gr = 5 × 103 and Re = 1
for Pr = 0.7. A detailed analysis of flow pattern shows that the natural or forced convection is based on both the parameters Ri ( Gr

Re2 ) and Pr.

As the value of Re increases from 1 to 102, there occurs a transition from natural convection to forced convection depending on the value of Gr
irrespective of Pr. Particularly for higher value of Grashof number (Gr = 105), the effect of natural convection is dominant upto Re = 10 and
thereafter the forced convection is dominant with further increase in Re. As Pr increases from 0.015 to 10 for a fixed Re and Gr (Gr = 103),
the inertial force gradually becomes stronger and the intensity of secondary circulation gradually weakens. The local Nusselt number (Nub) plot
shows that the heat transfer rate is very high at the edges of the bottom wall and then decreases at the center of the bottom wall for the uniform
heating and that contrasts lower heat transfer rate at the edges for the non-uniform heating of the bottom wall. It is also observed that Nul shows
non-monotonic behavior with both uniform and non-uniform heating cases for Re = 10 at higher value of Pr. The average Nusselt number plot
for the left or right wall shows a kink or inflexion at Gr = 104 for highest value of Pr. Thus the overall power law correlation for average Nusselt
number may not be obtained for mixed convection effects at higher Pr.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

A convection situation involving both natural and forced
convection is commonly referred as mixed convection. In mixed
convection flows, the forced convection as well as the free con-
vection effects are of comparable magnitudes. Thus, mixed con-
vection occurs if the effect of buoyancy forces on a forced flow
or the effect of forced flow on a buoyant flow is significant.
The governing non-dimensional parameters for the description
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of flows are Grashof number (Gr), Reynolds number (Re) and
Prandtl number (Pr). In addition, another dimensionless param-
eter, Richardson number (Ri) may be defined as Ri = Gr/Ren.
Analysis indicates that Richardson number (Ri) characterizes
mixed convection flow where Gr and Re represent the strength
of the natural and forced convection flow effects, respectively.
The limiting case Ri → 0 and Ri → ∞ correspond to the forced
and natural convection flows, respectively. The exponent n de-
pends on the geometry, thermal boundary condition and the
fluid. Bejan [1] carried out a scale analysis of mixed convec-
tion flow over a vertical wall and showed that the criterion for
the transition from the forced convection dominant flow to nat-
ural convection dominant flow was not the same for fluids with
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Nomenclature

g acceleration due to gravity . . . . . . . . . . . . . . . . m s−2

J Jacobian of Residual equations
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

L length of the square cavity . . . . . . . . . . . . . . . . . . . m
N total number of nodes
Nu local Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P dimensionless pressure
Pr Prandtl number
R Residual of weak form
Re Reynolds number
Gr Grashof number
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Th temperature of hot bottom wall . . . . . . . . . . . . . . . K
Tc temperature of cold side walls . . . . . . . . . . . . . . . . K
u x component of velocity . . . . . . . . . . . . . . . . . m s−1

U X component of dimensionless velocity
U0 velocity of the upper lid in x-direction . . . . . m s−1

v y component of velocity . . . . . . . . . . . . . . . . . m s−1

V Y component of dimensionless velocity

X dimensionless distance along x-coordinate
Y dimensionless distance along y-coordinate

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

β volume expansion coefficient . . . . . . . . . . . . . . K−1

γ penalty parameter
θ dimensionless temperature
ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

Φ basis functions
ψ stream function

Subscripts

b bottom wall
i residual number
k node number
s side wall

Superscripts

n Newton iterative index
Pr � 1 and Pr � 1. The transition criterion is not yet validated
for Pr � 1 due to non-existence of experimental data for this
range of Pr.

Mixed convection problem with lid driven flows within an
enclosure finds a wide range of applications in various fields of
engineering and science such as flow and heat transfer in solar
ponds [2], dynamics of lakes [3], thermal-hydraulics of nuclear
reactors [4] and float glass production [5]. The lid driven cavity
problem has been extensively used as a benchmark case for the
evaluation of numerical solution algorithms [6,7].

Previous studies reflect that there are two categories of study
available for mixed convection flows in enclosures. The first
category is concerned with a horizontal sliding lid which en-
compasses the top wall [8–12], bottom sliding wall [13,14] or
an oscillating lid [15,16]. These studies have been extended for
three dimensional cavities [17,18]. The other type of problem
is associated with side driven differentially-heated enclosures,
where one wall or both vertical walls move with a constant ve-
locity in their planes [19–21].

Moallemi and Jang [8] analyzed the effects of Prandtl num-
ber (Pr) on laminar mixed convection heat transfer in a lid
driven cavity. They performed the numerical simulations for
two-dimensional laminar flow (100 � Re � 2200) and studied
the effects of small to moderate Prandtl numbers (0.01 � Pr �
50) on the flow and heat transfer characteristics in a square
cavity for various values of Richardson number (Ri). The tem-
perature and flow fields in the cavity show the strong influence
of Prandtl number, Pr. The local and average Nusselt numbers
are also reported for various values of Re, Ri and Pr. Mixed
convection heat transfer in a lid driven cavity was also inves-
tigated by Prasad and Koseff [9]. They performed a series of
experiments in a cavity filled with water and measured the heat
flux at different locations over the hot cavity floor for a range
of Re and Gr. Their results indicate that the overall (i.e. area
averaged) heat transfer rate is a very weak function of Gr for
2200 � Re � 12000.

A significant amount of mixed convection studies involve
various applications. Mohamad and Viskanta [10] reported on
the onset of instability in a shallow lid-driven cavity heated
from below. They carried out a linear stability analysis and
found that Pr influences the conditions for the initiation of
the mixed convection regime. Amiri et al. [11] have analyzed
the effects of mixed convection heat transfer in lid driven cav-
ity with sinusoidal wavy bottom surface. They investigated the
implications of Richardson number (Ri), number of wavy sur-
face undulations, and amplitude of wavy surface on the flow
structure for Pr = 1. They have also illustrated that the average
Nusselt number increases with an increase in both amplitude of
the wavy surface and Reynolds number (Re).

Oztop and Dagtekin [21] studied steady state two-dimen-
sional mixed convection problem in a vertical two-sided lid-
driven differentially heated square cavity. The left and right
moving walls were maintained at different constant tempera-
tures while upper and bottom walls were thermally insulated.
Three cases were considered depending on the direction of
moving walls and Richardson number, Ri. They observed that
both Richardson number and direction of moving walls affect
the fluid flow and heat transfer in the cavity. For Ri � 1, the in-
fluence of moving walls on the heat transfer is the same when
the walls move in opposite direction regardless of which side
moving upwards and the influence is less when both sides move
upwards. For the case of opposing buoyancy and shear forces
and for Ri � 1, the heat transfer rate is larger due to formation
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of secondary cells on the walls and a counter rotating cell at the
center.

A few applications on mixed convection involve in chan-
nels within open cavity [22–24]. Manca et al. [22] studied nu-
merically mixed convection in an open cavity with a heated
wall bounded by a horizontally insulated plate. They consid-
ered three basic heating modes: (i) the heated wall is on the
inflow side (assisting flow); (ii) the heated wall is on the outflow
side (opposing flow); and (iii) the heated wall is the horizontal
surface of the cavity (heating from below). Their results are re-
ported based on streamlines, isotherms, wall temperature, and
the velocity profiles. They found that the opposing forced flow
configuration has the highest thermal performance in terms of
both maximum temperature and average Nusselt number. Later,
Manca et al. [23] carried out experimental investigations on
mixed convection in an open cavity with a heated wall on the
inflow side, bounded by a horizontally unheated plate. The flow
visualization illustrates two nearly distinct fluid motions for
Re = 1000: a parallel forced flow in the channel and a recir-
culation flow inside the cavity. They found that the effect of a
stronger buoyancy determines a penetration of thermal plume
front for Re = 100. Their experimental investigation was fur-
ther extended for mixed convection in an open cavity with a
heated wall bounded by a horizontal unheated plate where the
heated wall is on the opposite side of the forced inflow [24].

Mixed convection studies are also carried out in presence
of isolated or discrete heat sources [25–27]. Papanicolaou and
Jaluria [25] studied the effects of mixed convection from an
isolated heat source in a rectangular enclosure. Their study
is based on the mixed convection transport from an isolated
thermal source, with a uniform surface heat flux input and lo-
cated in a rectangular enclosure. The interaction of the cooling
stream with the buoyancy-induced flow from the heat source is
of interest in this work. Laminar, two-dimensional flow is as-
sumed, and the problem lies in the mixed convection regime,
governed by the buoyancy parameter ( Gr

Re2 ) and the Reynolds
number (Re).

Hsu et al. [26] studied combined free and forced convection
in a partially divided enclosure with a finite-size heat source.
The enclosure is partially divided by a conductive vertical di-
vider protruding from the floor or the ceiling of the enclosure.
The present study simulates a practical system such as air-
cooled electronic equipment with heated components. The de-
veloped mathematical model is governed by the coupled equa-
tions of stream function, vorticity transport, and energy and is
solved by employing the cubic spline collocation scheme. The
results indicate that the average Nusselt number and the dimen-
sionless surface temperature on the heat source strongly depend
on the location and the height of the divider.

Hsu and Wang [27] carried out numerical study on mixed
convective heat transfer in rectangular enclosure. The discrete
heat sources are embedded on a vertical board, which is sit-
uated on the bottom wall of an enclosure. An external airflow
enters the enclosure through an opening in one vertical wall and
exits from another opening in the opposite wall. This study sim-
ulates a practical system, such as air-cooled electronic devices
with heated elements. The computational results indicate that
both the thermal field and the average Nusselt number ( Nu ) de-
pend strongly on the governing parameters, position of the heat
sources, as well as the property of the heat-source-embedded
board. Although there are a number of studies available in
the literature as mentioned above for mixed convection flows
within enclosures, the detailed analysis on local and average
heat transfer rates as a function of various governing parame-
ters is yet to appear in the literature.

Current study deals with the mixed convection heating of
commonly used liquids in a square enclosure where the bottom
wall is heated (uniformly and non-uniformly) and vertical walls
are exposed to cooled ambiance whereas the lid driven top wall
is well insulated and sliding with a uniform velocity. It may be
noted that present study stems from a recent work [28] where
natural convection within a square cavity has been investigated
in presence of uniform and non-uniform heating of the bot-
tom wall. The flow circulations, isotherms and Nusselt number
have been reported for 103 � Ra � 105 with Pr = 0.7–10. The
critical Rayleigh numbers for conduction dominant regimes
have also been found for the uniform and non-uniform heat-
ing cases. Overall, the article [28] analyzes natural convection
effects which correspond to Ri = ∞ and thus current work fo-
cuses mainly on mixed convection regime.

The aim of the present paper is to provide a complete un-
derstanding about the problem, solution procedure using finite
element method and detailed analysis of temperature and the
flow fields on heat transfer evaluation. In the current study,
Galerkin finite element [29] method with penalty parameter
has been used to solve the nonlinear coupled partial differen-
tial equations governing flow and temperature fields for both
uniform and sinusoidally varying temperature distribution pre-
scribed at bottom wall. The detailed analysis of heat transfer
rates or Nusselt numbers has been carried out using finite ele-
ment basis functions.

2. Problem formulation

A two-dimensional square cavity is considered for the
present study with the physical dimension as shown in Fig. 1.
The bottom wall of the cavity is maintained at a uniform or
non-uniform temperature and the upper wall is insulated. The
two vertical walls are maintained at cold temperature. It may
be noted that the bottom wall is maintained at a higher tem-
perature to induce buoyancy effect. The top wall is assumed to
slide from left to right with a constant speed U0. The flow is as-
sumed to be laminar and the fluid properties are assumed to be
constant except for the density variation which is modeled ac-
cording to Boussinesq approximation while viscous dissipation
effects are considered to be negligible. The viscous incompress-
ible flow and the temperature distribution inside the cavity are
governed by the Navier–Stokes and the energy equations, re-
spectively. The aim of the current work is to investigate the
steady solutions and hence, we have considered the time in-
dependent differential equations. Similar procedure was also
followed in the recent work on mixed convection [11]. A num-
ber of earlier works was based on steady solutions which were
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Fig. 1. Schematic diagram of the physical system.

obtained via steady mathematical model [8–10,28,31,33]. The
governing equations are non-dimensionalized to yield

∂U

∂X
+ ∂V

∂Y
= 0 (1)

U
∂U
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+ 1
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U
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∂X
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∂θ

∂Y
= 1
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(
∂2θ

∂X2
+ ∂2θ

∂Y 2

)
(4)

The transformed boundary conditions are:

U(X,1) = 1, U(X,0) = U(0, Y ) = U(1, Y ) = 0

V (X,0) = V (X,1) = V (0, Y ) = V (1, Y ) = 0

θ(X,0) = 1 or sin(πX)

θ(0, Y ) = θ(1, Y ) = 0,
∂θ

∂Y
(X,1) = 0 (5)

The dimensionless variables and parameters are defined as fol-
lows:

X = x

L
, Y = y

L
, U = u

U0

V = v

U0
, θ = T − Tc

Th − Tc

, P = p

ρU2
0

Pr = ν

α
, Re = U0L

ν
, Gr = gβ(Th − Tc)L

3

ν2
(6)

Here x and y are the distances measured along the horizontal
and vertical directions, respectively; u and v are the velocity
components in x- and y-directions, respectively; T denotes the
temperature; p is the pressure and ρ is the density; Th and Tc

are the temperature at the hot and cold walls, respectively; L

is the length of the side of the square cavity; X and Y are di-
mensionless coordinates varying along horizontal and vertical
directions, respectively; U0 is the velocity of the upper wall;
U and V are dimensionless velocity components in the X and
Y directions, respectively; θ is the dimensionless temperature;
P is the dimensionless pressure; Gr, Re and Pr are Grashof,
Reynolds and Prandtl number, respectively.

3. Solution procedure

The momentum and energy balance equations [Eqs. (2)–
(4)] are the combinations of mixed elliptic–parabolic system of
equations which have been solved using the Galerkin finite ele-
ment method. The continuity equation [Eq. (1)] have been used
as a constraint due to mass conservation and this constraint may
be used to obtain the pressure distribution. In order to solve
Eqs. (2)–(3), we use the penalty finite element method where
the pressure P is eliminated by a penalty parameter γ and the
incompressibility criteria given by Eq. (1) (see [29]) results in

P = −γ

(
∂U

∂X
+ ∂V

∂Y

)
(7)

The continuity equation [Eq. (1)] is automatically satisfied for
large values of γ . Typical values of γ that yield consistent solu-
tions are 107. Using Eq. (7), the momentum balance equations
[Eqs. (2) and (3)] reduce to

U
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and
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The system of equations [Eqs. (4), (8) and (9)] with boundary
conditions [Eq. (5)] are solved by using Galerkin finite element
method [29]. Expanding the velocity components (U,V ) and
temperature (θ) using basis set {Φk}Nk=1 as,

U ≈
N∑

k=1

UkΦk(X,Y )

V ≈
N∑

k=1

VkΦk(X,Y ), and

θ ≈
N∑

k=1

θkΦk(X,Y ) (10)

the Galerkin finite element method yields the following nonlin-
ear residual equations for Eqs. (8), (9) and (4), respectively, at
nodes of internal domain Ω :

R
(1)
i =

N∑
k=1

Uk

∫
Ω

[(
N∑

k=1

UkΦk

)
∂Φk

∂X

+
(

N∑
VkΦk
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and
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The set of non-linear algebraic equations [Eqs. (11)–(13)]
are solved using reduced integration technique [29,30] and
Newton–Raphson method as discussed in earlier work [28,31].
The numerical solutions obtained in terms of the velocity com-
ponents (U,V ) and stream functions (ψ) are evaluated using
the relationship between the stream function (ψ) and the veloc-
ity components [32], where the stream function (ψ) is defined
in the usual way as U = ∂ψ

∂Y
and V = − ∂ψ

∂X
. It may be noted

that, the positive sign of ψ denotes anti-clockwise circulation
and the clockwise circulation is represented by the negative sign
of ψ . The no-slip condition is valid at all boundaries as there is
no cross flow, hence ψ = 0 is used for the boundaries except
for the moving top wall. The heat transfer coefficient in terms
of the local Nusselt number (Nu) is defined by

Nu = −∂θ
(14)
∂n
where n denotes the normal direction on a plane. The local Nus-
selt numbers at bottom wall (Nub) and at the side wall (Nus) are
defined as:

Nub = −
9∑

i=1

θi

∂Φi

∂Y
(15)

and

Nus = −
9∑

i=1

θi

∂Φi

∂X
(16)

The average Nusselt numbers at the bottom and side walls are:

Nub =
∫ 1

0 Nub dX

X|10
=

1∫
0

Nub dX (17)

and

Nus =
∫ 1

0 Nus dY

Y |10
=

1∫
0

Nus dY (18)

Note that, Nus may be referred as Nul and Nur for the left and
right walls, respectively.

4. Results and discussion

4.1. Numerical tests

The computational domain consists of 20 × 20 bi-quadratic
elements which correspond to 41 × 41 grid points. The bi-
quadratic elements with lesser number of nodes smoothly cap-
ture the non-linear variations of the field variables which are
in contrast with finite difference/finite volume solution avail-
able in the literature [21]. In order to assess the accuracy of our
numerical procedure, we have also tested our algorithm based
on the grid size for driven cavity flow [6] and mixed convec-
tion [8].

Numerical solutions are obtained for various values of Gr =
103–105, Pr = 0.015–10 and Re = 1–102 with uniform and
non-uniform heating of the bottom wall where the two verti-
cal walls are cooled and the top wall is well insulated with a
horizontal velocity, U = 1. The jump discontinuity in Dirich-
let type of wall boundary conditions at the corner point (see
Fig. 1) corresponds to computational singularity. To ensure the
convergence of the numerical solution to the exact solution, the
grid sizes have been optimized and the results presented here
are independent of grid sizes. In particular, the singularity at
the corner nodes of the bottom wall needs special attention.
The grid size dependence effect of the temperature disconti-
nuity at the corner points upon the local and average Nusselt
numbers tend to increase as the mesh spacing at the corner is
reduced. One of the ways for handling the problem is assum-
ing the average temperature of the two walls at the corner and
keeping the adjacent grid-nodes at the respective wall temper-
atures. Alternatively, based on earlier work by Ganzarolli and
Milanez [33], this procedure is still grid dependent unless a suf-
ficiently refined mesh is implemented. Accordingly, once any
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corner formed by the intersection of two differentially heated
boundary walls is assumed at the average temperature of the
adjacent walls, the optimal grid size obtained for each configu-
ration corresponds to the mesh spacing over which further grid
refinements lead to grid invariant results in both heat transfer
rates and flow fields.

In the current investigation, Gaussian quadrature based finite
element method provides the smooth solutions at the interior
domain including the corner regions as evaluation of residual
depends on interior Gauss points and thus the effect of corner
nodes is less pronounced in the final solution. The present finite
element approach offers special advantage on evaluation of lo-
cal Nusselt number at the bottom and side walls as the element
basis functions are used to evaluate the heat flux. The numer-
ical accuracy on the average Nusselt numbers and maximum
horizontal and vertical dimensionless velocity components at
an assigned vertical and horizontal plane across the cavity are
within 0.1–1%.

4.2. Effect of Grashof number: uniform and non-uniform
heating of the bottom wall

Figs. 2–4 illustrate the stream function and isotherm con-
tours with the uniformly heated bottom wall for Gr = 103–105,
Pr = 0.015–10 and Re = 1. Fig. 2(a) shows that the effect of
lid-driven flow predominates the natural convection for Gr =
103 and Pr = 0.015. The lid velocity produces inertia effect on
the flow near the upper boundary. A small amount of fluid is
pulled up towards the left corner due to drag force created by
the motion of the upper lid. The clockwise circulation is found
to be more as compared to anticlockwise circulation. As a re-
sult, the stream function contours nearer to the upper lid are
not exactly oval and two asymmetric rolls with clockwise and
anti-clockwise circulations are observed. The magnitude of the
stream function is also very low and heat transfer is conduc-
tion dominated within the cavity. Due to dominant conduction
mode, all the isotherms except θ = 0.1 are smooth symmetric
curves that span the entire cavity. The isotherm with θ = 0.1
also occurs symmetrically near the side walls of the enclosure.
Fig. 2(b) shows the contour plots for Gr = 104. Here the effect
of lid driven flow tends to vanish and both anticlockwise and
clockwise circulations become almost symmetric. The larger
value of Gr increases the strength of buoyancy and hence the
strength of natural convection within the cavity increases. It is
interesting to observe that the strength of circulation increases
from 0.15 to 1.5 at the center of the cavity. The streamlines at
the center of the cavity are mostly elliptic in shape and far away
from the center are rectangular in shape. The isotherms except
with θ = 0.1 are smooth curves which span the entire enclosure
and they are symmetric with respect to the vertical center line.
This also illustrates a conduction dominated effect. Fig. 2(c)
shows the effect for Gr = 105. The larger strength of circula-
tion in this case indicates that buoyancy driven circulation is
enhanced inside the cavity. The isotherm contours with θ = 0.1
gradually get shifted towards the vertical wall due to stronger
buoyancy effects.
Figs. 3 (a)–(c) show the stream function and temperature
contour for various Gr with Pr = 0.7 and Re = 1. Fig. 3(a) dis-
plays the effect of lid driven flow inside the cavity for Gr = 103.
Similar to Fig. 2(a), the strength of clockwise circulation is
stronger than the anticlockwise circulation as the lid driven ef-
fect dominates over the strength of buoyancy. It is interesting
to observe that the temperature distributions are coupled with
stream functions for Pr = 0.7 and hence the isotherms gradu-
ally tend to be asymmetric. Fig. 3(b) shows the contour plots
for Gr = 104. Similar to Fig. 2(b), the effect of lid driven flow
gradually diminishes with the increase of Gr. The circulation
near the central region becomes stronger and consequently, the
temperature contours with θ = 0.1–0.3 start getting shifted to-
wards the side walls (see Fig. 3(b)). The presence of significant
convection is also exhibited in other temperature contour lines
which start getting deformed and lifted towards the top plate.
Fig. 3(c) illustrates contours for Gr = 105 where both the anti-
clockwise and clockwise circulations are observed to be sym-
metric. The effect of lid-driven flow totally vanishes for higher
value of Gr as the buoyancy becomes the dominant force due
to increase in the value of Gr. The temperature gradients near
both the bottom and side walls tend to be significant leading to
the development of thermal boundary layer. Fig. 3(b) shows that
the weak thermal boundary layers along side walls and the bot-
tom wall occupy nearly 85% of the cavity for Gr = 104 whereas
for Gr = 105 the isotherms presented in Fig. 3(c) indicate the
presence of strong thermal boundary layers occupying about
70% of the cavity. It may be noted that overall thermal bound-
ary layers are based on along two side walls and the bottom
wall.

Figs. 4 (a)–(c) display the effect of Gr varying within 103

to 105 and for Pr = 10. It is interesting to observe that the
isotherms with θ � 0.4 are clustered towards the top portion
of the right wall illustrating that the convection plays a domi-
nant role in the heat transfer and that contrast the cases for fluids
with smaller Pr under identical Gr. As the anti-clockwise circu-
lation cells in the right half are stronger, the isotherms are found
to be clustered towards the right wall. Due to higher intensity
of circulations, the thermal mixing is larger near the center and
the temperature (θ ) near the central core varies within 0.4–0.6
(see Fig. 4(a)). The dominant effect of lid velocity is still ob-
served for Gr = 104 as seen in Fig. 4(b). The circulation cells
still show asymmetric trend and the intensity of circulation in
the right half is found to be stronger. The effect of natural con-
vection is found to be important for Gr = 104 and the isotherms
with θ � 0.4 are highly clustered near the walls. It is interesting
to observe that the isotherms near both the side walls are sym-
metric whereas the effect of asymmetric flow is reflected for
isotherms near the center (see Fig. 4(b)). The thermal mixing is
more for Gr = 104, and a large region at the center remains
at θ = 0.4–0.5. At Gr = 105, the natural convection domi-
nates the flow and the circulation is found to be symmetric (see
Fig. 4(c)). Similar situations were also found for Gr = 105 as
seen in Figs. 2(c) and 3(c). The larger intensity of flow enhances
the mixing and the isotherms are highly clustered towards the
side walls. A large region at the central core is maintained with
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Fig. 2. Stream function and temperature contours for uniform bottom heating case with Pr = 0.015, Re = 1: (a) Gr = 103, (b) Gr = 104, and (c) Gr = 105.
θ = 0.4–0.5. The isotherms are found to be symmetric due to
dominant natural convection for Gr = 105.

Streamlines and isotherms for non-uniform bottom heat-
ing have also been studied for Gr = 103–105, Re = 1 with
Pr = 0.7 (see Fig. 5) and 10 (see Fig. 6). It has been seen
earlier that uniform heating of the bottom wall causes finite
discontinuity in the Dirichlet boundary conditions for the tem-
perature distribution at the edges of the bottom wall. In con-
trast, the non-uniform heating removes singularity at the edges
of the bottom wall and provides a smooth temperature dis-
tribution in the entire cavity. The circulation pattern as seen
in Figs. 5 (a)–(c) is qualitatively similar to that of uniform
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Fig. 3. Stream function and temperature contours for uniform bottom heating case with Pr = 0.7, Re = 1: (a) Gr = 103, (b) Gr = 104, and (c) Gr = 105.
heating case as seen in Figs. 3 (a)–(c). Due to non-uniform
heating, the heating rate near the side wall is generally lower
and the temperature decreases from the middle of the bot-
tom wall towards the top and side walls. The isotherms are
found to be symmetric with respect to the vertical centerline
as seen in Fig. 5(a). The isotherms with θ � 0.2 occur sym-
metrically near the side walls for Gr = 104 (see Fig. 5(b)) and
the isotherms with θ � 0.3 occur symmetrically near the side
walls for Gr = 105 (see Fig. 5(c)). These show the overall lower
heating rates which contrast the cases with uniform heating ef-
fect (see Figs. 3 (a)–(c)). The streamlines and the isotherms
for Pr = 10 with non-uniform heating effects are illustrated in
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Fig. 4. Stream function and temperature contours for uniform bottom heating case with Pr = 10, Re = 1: (a) Gr = 103, (b) Gr = 104, and (c) Gr = 105.
Figs. 6 (a)–(c). The circulation patterns are qualitatively simi-
lar to that of Fig. 4, but the intensity of circulation is less due
to non-uniform heating effects. The isotherms except at the cen-
tral region are also qualitatively similar to that of Figs. 4 (a)–(c).
The temperature of the core is less due to non-uniform heating
effect.
4.3. Effect of Reynolds number: uniform and non-uniform
heating of the bottom wall

Figs. 7 and 8 display the stream function and isotherm con-
tours for Re = 1, 10 and 102 with Gr = 103 corresponding to
Pr = 0.015 (see Fig. 7) and 10 (see Fig. 8) with uniform bot-
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Fig. 5. Stream function and temperature contours for non-uniform bottom heating case with Pr = 0.7, Re = 1: (a) Gr = 103, (b) Gr = 104, and (c) Gr = 105.
tom heating. The increase in Re enhances the effect of forced
convection and suppresses the effect of natural convection. This
can also be explained by introducing another dimensionless pa-
rameter Ri = Gr/Re2.

Figs. 7 (a)–(c) show the distributions for Pr = 0.015 and
Gr = 103 with various values of Re. Fig. 7(a) displays the dis-
tributions for Re = 1 and Ri = 103 which denotes a combined
effect of buoyancy and lid-driven force inside the cavity. The
clockwise and anticlockwise circulations are not symmetric due
to additional force created by the motion of the upper lid. The
right vortex (primary vortex) is dominant due to movement of
the upper wall and the left vortex (secondary vortex) is formed
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Fig. 6. Stream function and temperature contours for non-uniform bottom heating case with Pr = 10, Re = 1: (a) Gr = 103, (b) Gr = 104, and (c) Gr = 105.
due to natural convection. It may be noted that on the right wall,
the buoyancy and shear forces are in the same direction whereas
on the left wall they are opposing each other. Less energy is no-
ticed to be carried away from the sliding top wall into the cavity
and, subsequently, the conduction heat transfer regime has be-
come the dominant mode of energy transport in the cavity. All
the isotherms except θ = 0.1 span the entire enclosure and they
are symmetric with respect to vertical center line. The isotherm
θ = 0.1 occurs symmetrically near the side wall of the enclo-
sure. The conduction dominance may also be confirmed by the
fact that the stream function and temperature contours are not
coupled. Fig. 7(b) shows the effect for Re = 10 and Ri = 10. As
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Fig. 7. Stream function and temperature contours for uniform bottom heating case with Pr = 0.015, Gr = 103: (a) Re = 1, (b) Re = 10, and (c) Re = 102.
Ri decreases, the effect of buoyancy gradually becomes weaker
as compared to the lid driven force. The secondary circulation
occupies a very small portion of the bottom left corner and the
primary circulation occupies the major portion of the cavity.
For Ri = 0.1 (see Fig. 7(c)), the circulation pattern resembles
the case of lid-driven cavity problem. The secondary circula-
tion vanishes and the primary circulation occupies the entire
cavity. The effect of buoyancy almost vanishes in this case. The
isotherms illustrate that streamlines and isotherms are decou-
pled and heat transfer is conduction dominant.

Fig. 8 shows the distributions for higher Prandtl number fluid
(Pr = 10) with Re = 1, 10, 102 and Gr = 103. Fig. 8(a) shows
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Fig. 8. Stream function and temperature contours for uniform bottom heating case with Pr = 10, Gr = 103: (a) Re = 1, (b) Re = 10, and (c) Re = 102.
that the effect of buoyancy increases with the increase of Pr re-
sulting an increase in the strength of anticlockwise circulation
as compared to Fig. 7(a) for lower value of Reynolds num-
ber (Re = 1). The effect of forced convection also increases
the strength of clockwise circulation for higher Prandtl num-
ber fluids due to higher viscosity. Thus the overall strength of
circulation inside the cavity increases as compared to Fig. 7(a).
Here, the effect of forced flow is more dominant as compared
to effect of buoyant force. Due to increase in the strength of cir-
culation, heat is transferred mostly due to convection. This is
contrary to the previous case where heat is transferred due to
conduction (see Fig. 7(a)). The temperature gradient near the
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bottom walls increases and the isotherms start shifting from the
right cold wall. As the value of Re increases to 10, the sec-
ondary circulation near the left wall tends to vanish and the
primary circulation occupies the entire cavity (see Fig. 8(b)). It
is clear from the temperature profile that with the increase in the
value of Pr the upper portion of the right half is thermally well
mixed and θ is within 0.1–0.2. Since a larger region is isother-
mally cold, the effect of buoyancy is limited to boundary layers
which decreases the strength of secondary vortex as compared
to lower value of Re (see Figs. 8 (a), (b)). As Re increases fur-
ther to 102, the flow will transform to a lid-driven cavity flow
(see Fig. 8(c)). It is observed that a large region near the right
half becomes isothermally cooled and the effect of heating will
be confined only near the bottom and left walls of the cavity
forming a strong thermal boundary layer attached to the bottom
wall occupying only 30% of the cavity.

Fig. 9 displays the effect of Re for Pr = 10 and Gr = 103

for the non-uniform bottom heating. In this case due to absence
of discontinuity in heating effects at edges, the isotherms are
smooth and continuous curves throughout the entire cavity. The
strength of circulation decreases in this case as compared to
Fig. 8 due to decrease in heating rates for the non-uniform heat-
ing case. The isotherms for θ � 0.4 occur near both sides of the
cavity for the uniform heating while for the non-uniform case
the isotherms for θ � 0.3 occur near the side walls. As the value
of Re increases, the inertial force becomes dominant and the
flow becomes a lid-driven flow. The heating effects are qualita-
tively similar as seen in Figs. 8(b) and 9(b) as well as Figs. 8(c)
and 9(c). A larger cold region near the right wall is observed
as seen in Fig. 9(c) and the region is larger due to non-uniform
heating at the bottom wall.

4.4. Effect of Prandtl number: uniform and non-uniform
heating of the bottom wall

The effect of Pr for representative higher values of Re and
Gr has been illustrated in Figs. 10–12. Although Ri is fixed
in each case, the figures show that the flow inside the cavity
is a function of Pr. It is interesting to observe that either con-
duction, or natural convection or forced convection is dominant
for various values of Pr with Ri = 100 in presence of uniform
heating of bottom wall (see Figs. 10 (a)–(c)). The isotherms
illustrate conduction dominance at Pr = 0.015 with the max-
imum value of stream function being 0.2. It is interesting to
observe that the right circulation cells are dominant which sig-
nify that the forced convection, however weak, is gradually
developed and the conduction dominant heating effect is ob-
served due to less intense circulations (Fig. 10(a)). The flow
circulations are qualitatively similar for Pr = 0.7. The maxi-
mum value of stream function for the right circulation cell is 0.4
and the size of the right circulation cells is larger than that with
Pr = 0.015. Due to enhanced circulation and thermal mixing
at the right half, the isotherms are pushed towards the left-side
wall. The dominant forced convection is attributed to the asym-
metric isotherms as seen in Fig. 10(b). The primary circulation
occupies most of the cavity except a smaller cell consisting of
secondary circulations occurring near the left wall for Pr = 10
(Fig. 10(c)). The enhanced thermal mixing due to large intense
primary circulation near the right half leads to the temperature
varying within 0.4–0.5 near the right wall. A thin boundary
layer is found to occur along the top portion of the right wall
whereas the isotherms are pushed near the left wall. Isotherms
are also pushed towards the bottom wall due to large primary
circulation cells. Thus strong thermal boundary layers are also
formed along the left and bottom walls. It is also interesting to
observe that isotherms near the left wall are non-monotonic due
to occurrence of the secondary cells.

Figs. 11 (a)–(c) illustrate the stream function and isotherm
contours for Re = 10 and Gr = 104 with various Pr in presence
of non-uniform heating. The qualitative trends of primary and
secondary cells are similar to that with uniform heating effect
as seen in Figs. 10 (a)–(c). The conduction dominant heating
effect is observed for Pr = 0.015 (see Fig. 11(a)) similar to uni-
form heating case. The convection dominant heating effects are
observed for Pr = 0.7 and 10 and similar to uniform heating
situation, the strong thermal boundary layer is found to develop
near the left wall and the central region of the bottom wall for
Pr = 10. It is interesting to observe that the temperature gradi-
ent is larger at the central region of the bottom wall due to the
non-uniform heating effect for all Prandtl numbers.

Figs. 12 (a)–(c) illustrate the stream function and tempera-
ture contours for Re = 102 and Gr = 104 with various Pr in
presence of uniform heating of the bottom wall. It may be noted
that, Ri = 1 for all the cases and it is interesting to observe that
primary circulation cells almost occupy the entire cavity. It is
also observed that secondary circulation cells appear near the
left corner of the bottom wall and the secondary cell disappears
at Pr = 10. Fig. 12(a) shows that the temperature distributions
are weakly coupled with stream function for Pr = 0.015 and
hence the isotherms tend to be symmetric resulting in con-
duction dominated flow. As Pr increases to 0.7, the isotherms
are clustered towards the bottom and left walls and convection
plays a dominant role in heat transfer. For further increase of
Pr to 10, the compression of isotherms are more prominent and
a strong thermal boundary layer develops near the bottom and
left wall (see Fig. 12(c)). Due to the compression of isotherms
towards the left wall, the heat transfer rates through the bottom
and left walls are more as compared to the right wall. Similar
effects are also observed for non-uniform heating of the bottom
wall.

4.5. Heat transfer rates: local and average Nusselt numbers

Figs. 13 (a)–(c) show the heat transfer rates (Nub , Nur and
Nul) for various Pr. The heat transfer rate (Nub) is very high
at the edges of the bottom wall due to discontinuities present
at the edges for uniform heating case and Nub reduces towards
the center of the bottom wall. The heat transfer rate is minimum
near the central region due to less temperature gradient for all
Pr as seen in Figs. 10 (a)–(c). It is observed that the local min-
ima for Pr = 0.015 is lesser than that for Pr = 0.7. It is also
interesting to observe that Nub is almost flat over a large region
near the center for Pr = 0.7 and that is due to the occurrence
of dispersed isotherm contours. The smaller heat transfer rate
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Fig. 9. Stream function and temperature contours for non-uniform bottom heating case with Pr = 10, Gr = 103: (a) Re = 1, (b) Re = 10, and (c) Re = 102.
(Nub) at X = 0.4 is observed due to the presence of secondary
flow and stagnation point which result in less heat transfer caus-
ing smaller temperature gradient as seen in Fig. 10(b). The
enhanced thermal mixing occurs for Pr = 10 and the isotherms
are highly clustered near the right portion of the bottom wall,
but the minima in Nub occurs near X = 0.3 due to the flow sep-
aration as seen in Fig. 10(c). It may be interesting to note that
the flow separation does not influence the thermal gradient for
Pr = 0.015 due to the conduction dominant heat transfer.

The local heat transfer rates (Nub) are also shown for non-
uniform heating cases (see Fig. 13(a)). The heat transfer rates
are lesser at the edges for all Pr as there is no discontinuity in
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Fig. 10. Stream function and temperature contours for uniform bottom heating case with Re = 10, Gr = 104: (a) Pr = 0.015, (b) Pr = 0.7, and (c) Pr = 10.
temperature for non-uniform heating of the bottom wall. It is

observed that Nub has local maxima at X = 0.5 for Pr = 0.015

and symmetric Nub vs. X is observed due to conduction domi-

nant heat transfer. Although Nub is almost identical at the cen-

ter for Pr = 0.015 and 0.7, but an additional dominant local

maxima also occurs at X = 0.7 for Pr = 0.7 due to compres-
sion of isotherms as seen in Fig. 11(b). Two local maxima in

Nub occur at X = 0.15 and 0.65 for Pr = 10 as the isotherms

are concentrated due to enhanced thermal mixing as seen in

Fig. 11(c).

Fig. 13(b) illustrates local heat transfer rate at the right wall

(Nur ) for uniform and non-uniform heating of bottom wall. It
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Fig. 11. Stream function and temperature contours for non-uniform bottom heating case with Re = 10, Gr = 104: (a) Pr = 0.015, (b) Pr = 0.7, and (c) Pr = 10.
is observed that Nur decreases with vertical distance especially

for Pr = 0.015 and 0.7 for both uniform and non-uniform heat-

ing situations. This is due to the fact that thermal boundary

layer starts to grow from the bottom edge and the thickness of

the boundary layer is higher at the top of the side wall. As Pr

increases to 10, Nur takes the minimum value at the bottom
of the right wall due to larger thickness of the boundary layer

and Nur increases with the increase of vertical distance as the

isotherms are highly clustered due to larger intensity of flow for

both uniform and non-uniform heating effects (see Figs. 11(c)

and 12(c)). Although, the qualitative trends of Nur distribution

for specific Pr are similar with uniform and non-uniform heat-
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Fig. 12. Stream function and temperature contours for uniform bottom heating case with Re = 102, Gr = 104: (a) Pr = 0.015, (b) Pr = 0.7, and (c) Pr = 10.
ing situations, but Nur is smaller due to non-uniform heating
effect at a specific location.

Variations of local heat transfer rates at the left wall (Nul)
are shown in Fig. 13(c). It is observed that Nul is found to
decrease with the distance for Pr = 0.015 and 0.7 for both
uniform and non-uniform heating situations and similar trends
were observed for variations of Nur . In contrast, Nul shows
non-monotonic behavior with distance and two intermediate
maxima in Nul occurs for Pr = 10 due to both uniform and
non-uniform heating of the wall. This non-monotonic variation
of Nul is due to wavy distributions of isotherms near the left
wall resulting from multiple secondary circulations.
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Fig. 13. Variation of local Nusselt number with the distance at the (a) bottom wall, (b) right wall, and (c) left wall for uniform heating (—) and non-uniform heating
(...) for Gr = 104 and Re = 10.
Figs. 14 (a)–(c) display the distributions for local Nusselt
number for Re = 102. The distributions of Nusselt numbers for
Pr = 0.015 with Re = 102 are similar to the distributions with
Re = 10 in presence of uniform and non-uniform heating ef-
fects. Due to increase in the value of Re, the effect of inertia
increases and isotherms are pushed towards the bottom and left
wall as observed for Pr = 0.7 and 10 (see Figs. 12 (b), (c)). It is
interesting to observe that the intensity of circulations near the
left corner is less and secondary circulation may appear near the
left corner. As a result, the thermal mixing is less and thus the
thermal gradient is less near the left corner of the bottom wall
due to uniform heating effects. Thereafter, Nub increases along
the bottom wall. Note that, qualitatively similar Nub distribu-
tions for non-uniform heating cases are observed with Re = 10
and Re = 102 (see Figs. 13(a) and 14(a)).

Fig. 14(b) represents the distributions of Nur for all Pr and
the distributions are qualitatively similar to those for Re = 10.
However, Nur at the top portion is lesser for Re = 102 espe-
cially with larger Pr due to enhanced thermal mixing in pres-
ence of uniform and non-uniform heating effects. Variations of
Nul are shown in Fig. 14(c). Due to enhanced convection and
thermal mixing, the thickness of the boundary layer near the
bottom of the left wall is quite less especially for Pr = 10 with
uniform heating case. As a result, the local heat transfer rate
(Nul) is quite large near the bottom portion of the left wall.
The enhancement of heat transfer rate with smaller magnitude
is also observed for non-uniform heating effects. It is interesting
to note that Nul was oscillatory for Re = 10 as seen in Fig.13(c)
due to secondary circulations whereas the strong primary circu-
lation for Pr = 10 cause the monotonic trend in Nul as seen in
Fig. 14(c).

The overall effects on heat transfer rates are shown in
Figs. 15 (a)–(d), where the distributions of the average Nus-
selt number at bottom and side walls, respectively, are plotted
versus logarithmic Grashof number. The average Nusselt num-
bers are obtained using Eqs. (17) and (18) where the integral is
evaluated using Simpson’s 1/3 rule. Figs. 15 (a) and (b) display
uniform heating case and Figs. 15 (c) and (d) represent non-
uniform heating case. For all these cases, it is observed that
average Nusselt numbers for the bottom and side walls remain
constant for Pr = 0.015. This is due to the fact that the conduc-
tion is dominant for lower value of Pr irrespective of Gr. The
average Nusselt number remains constant upto Gr = 5 × 103

for both uniform and non-uniform heating case with Pr = 0.7
and thereafter average Nusselt number increases. At Pr = 10,
the average Nusselt number for the left wall shows a kink at
Gr = 104, due to non-monotonic behavior of Nul as shown
in Fig. 13(c). On the other hand, the average Nusselt num-
ber for the right wall shows an inflexion point at Gr = 104

and average Nusselt number increases slowly beyond Gr = 104

and Pr = 10. This is due to large degree of compression of
isotherms near the left and bottom walls and enhanced thermal
mixing near the right wall. Due to higher degree of compression
of isotherms especially at higher Gr, the power law correla-
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Fig. 14. Variation of local Nusselt number with the distance at the (a) bottom wall, (b) right wall, and (c) left wall for uniform heating (—) and non-uniform heating
(...) for Gr = 104 and Re = 102.
tion between average Nusselt number and Grashof number may
not be obtained and this can be further attributed to kink and
inflexion points in average Nusselt number curves as seen in
Figs. 15 (b) and (d).

5. Conclusions

The prime objective of the current investigation is to study
the effect of uniform and non-uniform heating of the bottom
wall on the flow and heat transfer characteristics due to lid
driven mixed convection flows within a square cavity. It is ev-
ident that for fixed Re and Pr, the strength of circulation in-
creases with the increase in Gr. As Gr increases, the effect of
buoyancy increases leading to an increase in the strength of cir-
culation. Due to increase in circulation strength, the isotherms
are stretched along the side walls and heat is transferred mostly
by convection for higher value of Pr. The effect of Re has also
been studied in the present investigation for fixed value of Pr
and Gr. It is observed that the effect of natural convection de-
creases and forced convection increases with the increase of Re.
It has also been observed that for higher value of Pr, the effect
of heating is more pronounced near the bottom and left walls as
the formation of thermal boundary layers is restricted near the
bottom and left wall for both uniform and non-uniform heating
cases. Two circulation cells and one circulation cell are ob-
served for mixed convection and forced convection situations,
respectively irrespective of Pr. It may be noted that two sym-
metric circulation cells were found during natural convection
with identical boundary conditions [28]. The unique circulation
cells are found to be stable which is tested via various initial
guesses for Newton–Raphson method leading to unique solu-
tion. It may be important to note that an earlier work is based
on multiple flow circulations for the study of Rayleigh Benard
configuration [34].

The heat transfer rate is very high at the edges of the bottom
wall and it decreases at the center for the uniform heating which
is in contrast with lower heat transfer rate at the edges for the
non-uniform heating of the bottom wall. The local Nusselt num-
bers for the bottom and side walls also shows several important
features. The local Nusselt number for the bottom wall (Nub)
increases in the right half of the cavity for the uniform heating
whereas for non-uniform heating case it increases towards the
center as the effect of heating is maximum at the center. The
local Nusselt number plot for the side wall shows that the heat
transfer rate for uniform heating is always more as compared
to the non-uniform heating. The local Nusselt number (Nul)
shows oscillatory behavior for Pr = 10 and Re = 10 whereas
Nur has a minima at the center and that increases with the in-
crease of vertical distance. The average Nusselt number for the
bottom wall ( Nub ) shows power law variations for Gr with
higher Pr. On the other hand, Nul shows kink at Gr = 104 and
the variation of Nur shows an inflexion point at Gr � 104. Thus
the overall power law correlation for average Nusselt numbers



T. Basak et al. / International Journal of Thermal Sciences 48 (2009) 891–912 911
Fig. 15. Variation of average Nusselt number plot with Grashof number for uniform heating [a and b] and for non-uniform heating [c and d] with Pr = 0.015, 0.7,
and 10 and Re = 10.
may not be obtained for mixed convection effects particularly
at higher Pr.
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