NEWTONIAN FLUID MEETS AN ELASTIC SOLID....

ation time (ERT) approximation, ;=—(f;—f;%)/7, has be-
come the most popular form for the collision operator
because of its simplicity and computational efficiency. How-
ever, the absence of a clear time scale separation between the
hydrodynamic and nonhydrodynamic modes reduces the nu-
merical stability [40,57], and can sometimes cause signifi-
cant errors at solid-fluid boundaries [28]. Furthermore, it
does not allow independent variation of the bulk and shear
viscosities. Thus we employ the more flexible collision op-
erator of Eq. (A1).

APPENDIX B: BREATHING-MODE OSCILLATIONS
OF A SPHERICAL SHELL

Here we summarize the theoretical analysis of the oscil-
latory behavior of an elastic shell, both in vacuo and when
filled with an inviscid fluid. We limit ourselves to the re-
sponse of the system after an initial radial expansion. Fol-
lowing the initial expansion, the system will contract and
expand in an oscillatory manner (“breathing mode”) with a
characteristic frequency. Because of the symmetry of the sys-
tem the breathing mode is completely described by the radial
component of the displacement vector u,.(r,f) in the shell,
and the radial component of the enclosed fluid velocity
v,(r,1), which furthermore only depend on the radial coordi-
nate r and time 7. We denote the radius of the outer surface of
the shell with a, that of the inner surface with b, while R
=(a+b)/2 and h=a-b.

The displacement vector u(r,?) in the shell is determined
by the equation of motion for an isotropic elastic medium
(e.g., Ref. [58]),
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with E the shell’s Young’s modulus, p; its density, and v the
Poisson’s ratio. Hence, for u(r,t)=u,(r,f)F, with I the unit
vector in the radial direction, Eq. (B1) for the elastic shell
reduces to
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with ¢, the longitudinal speed of sound in the shell
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The fluid velocity v(r,z) inside the shell is described by
the equation of motion for an inviscid fluid (e.g., Ref. [59]),

(B3)
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with p, the fluid density and p its pressure. For v(r,?)
=v,(r,0F, and consequently p=p(r,t) this reduces to
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If we assume small amplitude oscillations, we can neglect
the quadratic term in v,, leaving

v, ap

Proe = ar

(B6)

Furthermore, as long as the compression is small (as is the
case for small amplitude oscillations)
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with « the bulk modulus. Differentiating both sides of Eq.
(B7) with respect to time and using Eq. (B6), we then arrive
at
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which is an equation for undamped, longitudinal compres-
sional waves, with c¢,=vV«/p; the speed of sound in the fluid.

The equations of motion can be solved by seeking solu-
tions of harmonic waves, i.e., by assuming

u(r,t)=Ur)e'™, v, (r,0)=V(r)e®, p(r.r)=P(r)e.

(B9)
Equations (B2) and (B8) then reduce to
d1ld, w?
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with the general solutions
U(r)=Aj(wr/cg) + By (wricy), (B12)
P(r) = Cjo(wr/cy) + Dyo(wricy) . (B13)

Here, j,(x) and y,(x) are the nth order spherical Bessel func-
tions of the first and second kind, and the coefficients
A,B,C, and D are integration constants, that have to be ob-
tained from the appropriate boundary conditions at the inner
and outer surface of the shell.

For small deformations, the stress tensor o in the shell is
related to the displacement vector u(r,?) according to (e.g.,

[58])
o=u(Va+ Vu") +\V -ul, (B14)
with I the unit tensor and u and N the Lamé coefficients
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Using spherical symmetry, u(r,7)=u,(r,t)r, this gives

au,
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Balancing the radial stress with the pressure at the inner and

outer surface of the shell gives o,,(r,1)==p(r,t) for r=a and

r=b. Hence, the boundary conditions for the stress are

U(r)

dUu
W+2u)— | +2N——=-P(r), r=a,r=b.
dr r

r

(B17)

These equations are sufficient to solve for the displacement
vector of an elastic shell in vacuo [in which case P(a)
=P(b)=0].

For the fluid filled shell we need two more boundary con-
ditions. The first is obtained by requiring the pressure to be
finite at r=0, giving D=0. The second is obtained by requir-
ing continuity of the normal velocity across the inner surface
of the shell, i.e.,

J
o, (b)= = (B18)
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Using Egs. (B6), (B7), and (B9), this reduces to
1 dP
Ub)=—s —| . (B19)
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1. An elastic shell in vacuo

First, we solve for the breathing mode oscillations in an
elastic shell in vacuo. Substituting Eq. (B12) in Eq. (B17)
and using P(a)=0 gives

A[sozjo(a) _jl(a)] + B[sayo(a) - yl(a’)] =0. (B20)
Here, a=wa/c,, the constant s is defined as
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and we used the fact that df,(x)/dx=f,_,(x)—(n+1)f,(x)/x,
with f,, either j, or y,. The boundary condition at r=>b leads
to an similar expression by substituting S=wb/c, for a in
Eq. (B20). Eliminating A and B then results in

sayo(a@) —yi(a)  sByo(B) —yi(B)

. = = (B22)
sajola) = ji(a)  sBjo(B) - j1(B)
which can be simplified to [60]
tan(Qh) _ 1 +sQ%b (B23)

Qh  Q%b+ (5022 - 1)(sQ%*-1)

Here, ft:h/R,Ez:a/R,l;:b/R, and the dimensionless fre-
quency () is defined as
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(B24)

Equation (B23) can be solved numerically for (). It has a
single solution ) in the limit h—0,

21 +v)(1 -2vp)

which is Lamb’s breathing-mode frequency for an infinitely
thin elastic shell in vacuo [52]. At finite &, there is a hierar-
chy of solutions; the lowest frequency being a generalization
of Lamb’s breathing-mode frequency for shells with a finite
thickness. The next higher frequency, which is proportional
to R/h, is a mode where the shell’s middle surface remains
stationary in time and the shell itself becomes thinner (com-
pressed) and thicker (expanded) in an oscillatory manner.

(B25)

2. An elastic shell filled with an inviscid fluid

Next, we solve for the breathing mode oscillations in an
elastic shell filled with an inviscid fluid. The general solution
is given by Egs. (B12) and (B13), where A ,B, and C have to
be obtained from Egs. (B17) and (B19) (remember that D
=0). Since, P(a)=0, as for the elastic shell in vacuo, the first
boundary condition is identical to that of the empty shell [Eq.
(B20)]. Using P(b)=Cjo(wb/cy), the second boundary con-
dition is obtained from Eq. (B20) by substituting 8= wb/c;
for @, and changing the right-hand side to
—(b/4p)Cjo(wb/cs). With Egs. (B12) and (B13), and
djo(x)/dx==j,(x), the third boundary condition (B19) re-
duces to

wb
Ajl(ﬁ)*‘B}’l(ﬁ):—le(_)- (B26)

Py N Cr

Eliminating A,B, and C and simplifying the result using the
same notation as in Eq. (B23) gives

[024b + (50282 = 1)(sQ%2 = 1) Jtan(Qh) - (1 + s02ab) 0
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which can be solved numerically for given values of R ,h,v,
and

(B28)

Expanding Eq. (B27) in powers of i and keeping only the
lowest order gives

[l_gg Jo(y2) ](g)zzl
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with Q given in Eq. (B25). This result is identical to that
obtained by Rand and DiMaggio [61] and Engin and
Liu [62] for n=0, and reduces to that obtained from mem-
brane theory for v=1/2 [63]. Note that for p;/p;—0,

Eq. (B29) reduces to Q=) the correct result for an
infinitely thin elastic shell in vacuo. For y— o, with ¢ finite,
it degenerates to
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which is the frequency equation for radial oscillations of an
inviscid fluid inside a rigid spherical cavity with radius b.
The same result could have been obtained directly, by solv-
ing Eq. (B11), subject to the boundary condition (B19) for
U(b)=0.

(B30)
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