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a b s t r a c t

A model was developed to determine the local changes of concentration of particles and the formations of
bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The
mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of
particles. This was achieved by balancing the forces acting on particles. The frequency ramping was
implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1 s.
The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and
solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach.
The first step solves the governing partial differential equations describing the acoustic field by assuming
that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is
calculated from the pressure field. The final step allows calculating the locally changing concentration of
particles as a function of time by solving the modified equation of particle transport. The diffusivity was
calculated as function of concentration following the Garg and Ruthven [1] equation which describes the
steep increase of diffusivity when the concentration approaches saturation. However, it was found that
this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations)
and high initial particle concentration. The model was simplified to a pseudo one-dimensional case
due to computation power limitations. The predicted particle distribution calculated with the model is
in good agreement with the experimental data as it follows accurately the movement of the bands in
the centre of the chamber.

Crown Copyright ! 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

The separation of suspended particles via acoustic radiation
forces has found several applications in medical and life sciences
fields where microchip configurations have been developed to
move, concentrate and manipulate biological cells, micrometre
sized solid particles and droplets suspended in immiscible fluid
[2]. The primary acoustic force translates particles to either the
node or antinode of the standing wave. This force decreases with
particle size but increases with frequency. Hence, in order to sep-
arate particles with sizes of only a few micrometres, frequencies
higher than 1 MHz are preferred to achieve sufficient separation.
This principle has been successfully implemented in micro-
channels, where the acoustic resonator can be tuned to match a
half wavelength (less than a millimetre for frequencies higher than
1 MHz). This, followed by advances in silicon/glass micro fabrica-
tion technologies, while taking advantage of the laminar flow

developed on micro-channels, has opened the door to develop
lab-on-a-chip technologies, where both acoustic trapping and
continuous flow separation has merged, showing great potential
to develop applications such as acoustic cytometers [3], cell sorting
[4], droplet sorting [5] and ultrasonic levitation [6], among others.

Although research on larger scale application is limited, studies
have been conducted on emulsion splitting, i.e., for recovering
crude oil from emulsions in oilfields [7], for recycling wastewater
and separating valuable components from wool scouring [8], for
biodiesel production [9] and in food processing to enhance cream-
ing of milk fat [10]. While the primary acoustic force traps the par-
ticle within the standing wave, additional forces such as secondary
acoustic forces, gravity and drag force are utilised to move particles
to desired locations [11]. For instance, acoustically enhanced sedi-
mentation or flocculation use the standing wave to trap particles
on planes perpendicular to the direction of sound propagation,
where secondary acoustic forces agglomerate the particles within
the bands. Then, after turning the acoustic field off, the larger
agglomerates sediment or float due to gravitational/buoyancy
forces, provided that the agglomerates are stable after the
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sonication period and do not redisperse [11]. Ramping the fre-
quency in a sawtooth pattern [12], which will be studied in this
paper, has also been used to displace particles towards the reflector
or the acoustic source, depending on the acoustic contrast factor
and whether the ramping is conducted from a lower to a higher
frequency or vice versa. For instance, particles with a positive con-
trast factor in a ramping system from lower to higher frequency
will be displaced towards the reflector, while particles with a neg-
ative contrast factor will be displaced towards the acoustic source
under the same ramping pattern.

Parallel to designing lab-on-a-chip applications, there has been
significant advances into developing mathematical models to
describe the resonance modes on microchips, aiming to predict
the acoustic force and the pressure amplitude acting on suspended
particles [13]. Building an efficient resonator is a complex task as
fine tuning is required to design the resonator in a way that opti-
mal acoustic coupling and maximum energy transmission into
the fluid is achieved [14]. Initial models such as the layered resona-
tor uses an equivalent circuit transducer model coupled with the
acoustic impedance transfer relationship to model acoustic cells
[15]. This model shows the effect of resonances on cell layers
and its effect on pressure distribution as a function of frequency.
More advanced modelling efforts solve the Helmholtz wave equa-
tion for the pressure amplitude of the wave and potential flow for
the velocity amplitude of the acoustic oscillation [13,16]. Once the
pressure and velocity amplitudes of the acoustic wave has been
determined, the acoustic force acting on particles can be predicted
by solving Gor’kov’s equation [17], which describes the force
potential exerted on particles by an acoustic field. After modelling
the acoustic field and calculating Gor’kov’s potential, the path of
single particle can be modelled by balancing the forces acting on
that particle; namely, acoustic force, drag and buoyancy [18], while

coupling it with the fluid velocity profile predicted by computa-
tional fluid dynamics (CFD). By modelling a series of particles at
the channel inlet and using the resulting particle coordinates,
Townsend et al. [18] estimated the change of concentration across
the channel. While this modelling approach may be sufficient for
designing and modelling microchannels, it is not suitable for larger
scale systems where more pronounced gradients on the acoustic
field and particle concentration are present. Hence, in this work
we are proposing to model the change of concentration of particles
by solving the mass transport equation, which will be modified to
account for the effect of the acoustic field. This way, the concentra-
tion of particles will be described by a diffusion model instead of
by tracking the movement of single particles.

2. Mathematical model

2.1. Governing equations for the transport of concentrated species

2.1.1. Balance of forces on particles to determine the mass flux of
particles

A group of particles in a stagnant liquid will randomly move
(Brownian motion) or diffuse following the gradient of the chemi-
cal potential lp. The effect of the gradient of chemical potential on
particles can be represented by the force Fl even though the
Brownian motion is due to the random movement of particles.
When those particles are subjected to an ultrasonic standing wave,
the primary acoustic force FRad will move those particles towards
the pressure nodes or antinodes for materials exhibiting a positive
contrast factor (explained on Section 2.7) or a negative contrast
factor, respectively. Particles moving in a viscous liquid will expe-
rience the Stokes drag force FDrag . For small particles it is reason-

Nomenclature

Latin symbols
a0 acceleration at the boundary (m s!2)
c speed of sound (m s!1)
c0 standard concentration defined as 1 (mol l!1)
cl speed of sound of the liquid (m s!1)
cp concentration of particles (mol m!3)
cs speed of sound of the solid particles (m s!1)
csat concentration of particles at saturation (mol m!3)
CD drag coefficient (kg s!1)
D diffusion coefficient (m2 s!1)
D0 diffusion coefficient at low concentration (m2 s!1)
f frequency (s!1)
FDrag drag force (N/mol!1)
Fl force due to the gradient of chemical potential (N/

mol!1)
FRad primary acoustic radiation force (N/mol!1)
h mesh element size (m)
i imaginary unit number
kb Boltzmann constant = 1.380 6 " 10!23 (J K!1)
mp mass of a single particle (kg)
_mp mass flux of particles (kg m!2 s!1)

n unit normal vector
NA Avogadro constant = 6.022 " 1023 (particles mol!1)
_Nj flux of species (mol m!2 s!1)
_Np molar flux of particles (mol m!2 s!1)
p fluid pressure (Pa)
hp2i mean square pressure fluctuation of the sound field

(Pa2)
P Amplitude of the acoustic pressure (Pa)
Pe Peclet number

r radius of particles (m)
R universal gas constant = 8.314 (J mol!1 K!1)
t time (s)
T temperature (K)
URad acoustic force potential (kg m2 s!2)
hm2i mean square velocity fluctuation of the sound field

(m2 s!2)
mp velocity of the particle (m s!1)
xp mass fraction of particles

Greek symbols
aPe convective term (m s!1)
g viscosity (Pa s)
j compressibility j ¼ 1=qc2 (Pa!1)
l0 chemical potential at standard conditions (J mol!1)
lp chemical potential of particles (J mol!1)
q density (kg m!3)
ql liquid density (kg m!3)
qs solid particle density (kg m!3)
qr total density (kg m!3)
r stress tensor (Pa)
UY acoustic contrast factor
x ¼ 2pf angular frequency (rad s!1)

Operators
<> time average
r nabla operator
@ partial differential
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able to neglect the particles’ inertia and to assume that they are al-
ways moving in a local steady state [19]. Hence, the forces acting
on the particle are balanced:

Fl þ FRad þ FDrag ¼ 0 ð1Þ

For a spherical particle with radius r, moving at a velocity mp

through a liquid with viscosity g, the Stokes drag force FDrag can
be expressed as:

FDrag ¼ !6pgrmp ð2Þ

Eq. (2) is valid for a single particle. By assuming that particles
are not interfering with each other, the equation above can be mul-
tiplied by the Avogadro constant NA to estimate the drag of one
mole, i.e., 6.022 " 1023, of particles:

FDrag ¼ !6pgrmpNA ð3Þ

The acoustic radiation force can be obtained from the acoustic
force potential as [13]:

FRad ¼ !rURad ð4Þ

where the acoustic force potential has been derived by Gor’kov [20]
as:

URad ¼
4p
3

r3 f1
1

2qlc2
l

hp2i! f2
3
4
qlhm2i

! "
ð5Þ

f1 ¼ 1!
js

jl
ð6Þ

f2 ¼
2ðqs ! qlÞ
ð2qs þ qlÞ

ð7Þ

The terms hp2i and hm2i are the mean square pressure amplitude
fluctuation of the sound field and of the particle velocity, respec-
tively, and can be determined by solving the Helmholtz equation.
j and q are compressibility and density while the subscripts l
and s stand for ‘‘liquid’’ and ‘‘solid particle’’, respectively. Eq. (4)
describes the acoustic force potential on a single particle. Again,
by assuming that particles do not interfere with each other and
neglecting multiple wave scattering between particles, Eq. (4)
can be multiplied by the Avogadro constant NA to account for the
radiation force per mole of particles:

FRad ¼ !NArURad ð8Þ

Fl is given by:

Fl ¼ !rlp ð9Þ

where lp is the chemical potential, which for small concentration of
particles can be expressed as:

lp ¼ l0 þ RT ln
cp

c0

# $
ð10Þ

where R is the universal gas constant (8.314 J mol!1 K!1), T is the
temperature, cp is the concentration of particles, l0 is the chemical
potential at standard conditions and c0 the standard concentration
defined as 1 mol/l. The gradient of the chemical potential is:

rlp ¼
RT
cp
rcp ð11Þ

Combining Eqs. (1), (3), (8), and (11), while applying the
Einstein–Stokes equation

6pgr ¼
kbT
D

ð12Þ

and introducing the Boltzmann constant kb ¼ R
NA

leads to:

!Drcp !
cp

CD
rURad ¼ cpmp ð13Þ

where D is the diffusion coefficient, and CD ¼ 6pgr is the drag coef-
ficient of a single particle. The term cpmp is the molar flux of particles
_Np with respect to a fixed spatial coordinate system and therefore:

_Np ¼ cpmp ¼ !Drcp !
cp

CD
rURad ð14Þ

The total density of the fluid qT, including the particles was cal-
culated as:

qT ¼ xpqs þ ð1! xpÞql ð15Þ

where xp is the mass fraction of particles. qs = 1050 kg m!3 and
ql = 998 kg m!3 are the density of the particles and liquid, respec-
tively. Because qs and ql are similar, the model can be simplified
by assuming that the total density is constant. In that case, the con-
tinuity equation shows that the total velocity m is zero:
@qt
@t þr ' ðqtmÞ ¼ 0
r ' ðmÞ ¼ 0
r ' ðmp þ mlÞ ¼ 0

ð16Þ

This means that a movement of particles at a certain velocity
and carrying a certain mass will be balanced by a movement of
water carrying the same mass at the same velocity but in the oppo-
site direction. The molar concentration of particles can be
expressed as:

cp ¼
xpqT

mpNA
ð17Þ

where mp is the mass of a single particle. The mass flux of particles
_mp can be obtained by multiplying the molar flux of particles by

mpNA:

_mp ¼ mpNA
_Np ð18Þ

Replacing Eqs. (14) and (17) into Eq. (18) leads to:

_mp ¼ !DrðxpqTÞ !
rURad

CD
ðxpqTÞ ð19Þ

In the next section, the mass flux of particles _mp is incorporated
into the total mass balance equation.

2.1.2. Total mass balance of particles
The time dependent mass balance of particles can be expressed

as:

@

@t
ðxpqTÞ þrð _mpÞ ¼ 0 ð20Þ

Inserting the mass flux of particles (c.f., Eq. (19)) in Eq. (20)
leads to the final equation of the mass balance of particles:

@

@t
ðxpqTÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Accumulation

þr ' !DrðxpqTÞ
&
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Diffusion

!rURad

CD
ðxpqTÞ

$

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Convection

¼ 0 ð21Þ

The terms of the equation can be compared with a general
transport equation by identifying the accumulation, diffusion and
convective terms. The diffusivity (or diffusion coefficient) for low
concentrations of particles can be calculated according to the Ein-
stein–Stokes equation:

Do ¼
kbT

6pgr
ð22Þ

However, this equation only accounts for the diffusion of spher-
ical particles at low concentrations. Because the acoustic force rap-
idly focuses particles at the nodes (or antinodes), neglecting the
effect of the concentration on diffusivity can lead to unrealistically
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high concentrations during modelling. To correct this, the effect of
concentration was incorporated following the equation proposed
by Garg and Ruthven [1]:

D ¼ Do

1! cp
csat

' ( ð23Þ

where csat is the concentration at saturation and Do is the limiting
diffusivity as cp ! 0. According to this equation, the diffusivity will
reach infinity at the saturation point which is the maximum concen-
tration of the particles tightly packed. The equation was developed
to account for the concentration dependence of diffusivity on zeo-
litic sorption curves. It reflects the fact that the rate of absorption
and desorption depends on the availability of free spaces on the zeo-
lite. It seems valid to use the pore diffusion approach when consid-
ering the band of particles as a porous media, where the amount of
particles entering and leaving the band depends on the already occu-
pied space within the band. If the band is saturated with particles
tightly packed the diffusion term in Eq. (21) will balance the convec-
tive term. In other words, the concentration of particles on the band
cannot be higher than the saturation concentration regardless of the
extent of the acoustic force, which is a sound representation of the
formation of bands.

2.2. Governing equations for the acoustic pressure and velocity field

The time independent form of the linear wave equation for har-
monic waves can be represented by the Helmholtz wave equation
for the pressure and the potential flow for the velocity:

r2P !
x2

c2 P ¼ 0 ð24Þ

v ¼ ! i
xqrP ð25Þ

where c and q are the speed of sound and the density of the fluid,
respectively, x is the angular frequency and P is the amplitude of
the acoustic pressure. Solving the Helmholtz equation allows to
determine the mean square fluctuation of the acoustic pressure
<p2> and the velocity <m2>, which is needed to calculate the primary
acoustic force via Gork’ov’s potential (c.f., Eqs. (5)–(7)).

2.3. Geometrical configuration

Fig. 1 shows the experimental setup designed by Möller et al.
[21] and Dual et al. [22]. They studied the effect of frequency ramp-
ing on the separation of Polystyrene particles suspended in water.
The device is aligned horizontally on a plane perpendicular to the
gravitational force. Experimental results were represented by

digital images taken with an Olympus SZH microscope equipped
with an Imperx IPX-2M30-L camera with a resolution of
1600 " 1200, showing the formations of bands for initial condi-
tions, 40 and 120 s. Their data was used to validate the model pre-
sented in this paper. The setup consists of a 23 mm " 23 mm "
5 mm poly(methylmethacrylate) PMMA chamber with a wall thick-
ness of 1 mm. A lead zirconate titanate ceramics transducer PZ26
was attached to one side of the wall as illustrated in Fig. 1. The sep-
aration chamber was filled with water and polystyrene particles
through two 1 mm holes in opposing corners of the top cover.
Due to the vibration of the transducer, a displacement of the adja-
cent PMMA leads to the propagation of an acoustic wave through
the fluid and reflection on the opposite wall, resulting in the forma-
tion of standing waves within the fluid that can trap the particles in
the pressure nodes. Hence, in order to concentrate the particles on
one side of the chamber, the pressure nodes have to move, which
was realised by implementing a so called sawtooth frequency
sweep, where the frequency was increased linearly from 1.5 to
2.5 MHz for a period of 20 s. After that, the frequency drops back
to 1.5 MHz and a new ramp is started. By continuously increasing
the frequency during each ramp, new pressure nodes and antinodes
are introduced into the system. The higher the frequency, the lower
the wavelength; hence the number of nodes and antinodes
increases with increasing frequency. The initial nodes are moved
towards the reflector opening space for new nodes to be introduced
in the vicinity of the transducer. As the acoustic force moves the
particles towards the nodes of the wave, the particles are moved to-
wards the reflector following the displacement of the bands.

As reported by Möller et al. [23] and Dual et al. [22] and earlier
in this manuscript, the processing chamber was filled with a mix-
ture of water and suspended polystyrene particles. After the cham-
ber was filled and the particles were uniformly distributed in the
suspension, the transducer was switched on at a peak to peak volt-
age setting of 10 V and an initial frequency of 1.5 MHz. Then, ramp-
ing was performed from 1.5 to 2.5 MHz for periods of 20 s, as
described earlier. Ramps were repeated six times and photographs
were taken at 0, 40 and 120 s. The photograph taken at time zero
refers to the moment when the ramping has started, after the ini-
tial frequency of 1.5 MHz has been established forming an initial
steady pattern of bands filled with particles. This means that at
time zero, particles are already focused on the bands. Photographs
at 40 and 120 s were taken at the beginning of the next sweeping
cycle where the frequency is 1.5 MHz.

2.4. Model setup

The coupled phenomena of piezoelectricity, acoustic fields and
diffusion of particles was modelled with COMSOL Multiphysics™
(COMSOL AB, Stockholm, Sweden) coupling the respective govern-
ing partial differential equations describing piezoelectricity, pres-
sure acoustics and transport of species, as implemented in the
software package. The frequency ramping was introduced as a
parametric sweep for the time harmonic frequency response in
time steps of 0.1 s, which is equivalent to frequency steps of
5 kHz from 1.5 to 2.5 MHz. The frequency as a function of time
within a 20 s period is given by:

f ½kHz) ¼ t
0:1 s

* 5 kHzþ 1500 kHz ð26Þ

The solution is obtained, as mentioned earlier, in a three step
approach. In the first step, the piezoelectricity, as well as the pres-
sure acoustics components of the multiphysics scenario, was
solved using a time harmonic frequency response (Helmholtz
equation) for each frequency corresponding to a specific time step.
The stationary prediction of the pressure amplitude can be justified
by the high speed of sound, which rapidly achieves a pseudo-Fig. 1. Separation chamber with transducer (dimensions are given in mm).
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steady state in the relatively small chamber configuration. In the
second step, the stationary predictions of pressure and velocity
are used to calculate the acoustic radiation force. In the third step,
the acoustic force is used to solve the transient transport of parti-
cles (c.f., Eq. (21)) for a time step of 0.1 s. Intermediate time steps
within the 0.1 s interval were automatically selected by the soft-
ware package ensuring numerical stability to solve Eq. (21).

Solving the Helmholtz equation at a frequency of 2.5 MHz
(wavelength of 0.5 mm) requires a mesh size of 0.05 mm to locate
at least ten nodal points within a wavelength. However, the move-
ment of particles occurs in a half wavelength distance, which is
characterised by sharp concentration gradients and, therefore, a
very fine mesh was required. Due to this, the model was solved
pseudo one-dimensional, and the mesh size was fixed at
0.002 mm after conducting preliminary runs to confirm the mesh
size independence of the simulation. The modelled geometry, de-
picted in Fig. 2, consists of the transducer with a thickness of
1 mm, the PMMA wall with a thickness of 1 mm, the separation
chamber with a total length of 20 mm and another PMMA wall
of 1 mm on the right. The numerical scheme of the utilised soft-
ware package does not allow solving the piezoelectricity compo-
nent on one-dimensional domains; this problem could be
circumvented by constructing the geometry as a slim 2D strip with
a height of 0.02 mm, where the selected top and bottom boundary
conditions force the modelling to be one-dimensional; i.e., a pseu-
do one-dimensional modelling domain was realised.

The considered problem was discretised using the finite ele-
ment method (FEM) and a mapped mesh consisting of 10,000
quadrilateral elements in x-direction and 10 quadrilateral ele-
ments in y-direction for the fluid domain. The transducer and
PMMA walls were modelled with 90 quadrilateral elements for
each section. The overall number of elements, therefore, sums up
to 100,270. No further noticeable change in the model output could
be observed by increasing the number of mesh elements. Compu-
tations were carried out on a Linux cluster system running Ubuntu
10.04. Four Intel" Xeon X5670 processors, each consisting of 6
cores (2.93 Ghz, 12 M Cache) and 94.6 GB RAM allowed for solving
1 s of ramping in approximately 1000 s. This lengthy solving pro-
cess of the fully coupled scenario was caused by the automatic
selection and adjustment of very small time steps, within the
0.1 s interval to ensure numerical stability when solving Eq. (21).

2.5. Boundary conditions

The boundaries are numbered in Fig. 2. A sinusoidal signal was
applied to the electrode (boundary 1) with a maximum electrical
potential of 7 V, whereas on the return electrode (boundary 2) a
ground boundary condition (zero voltage) was implemented. A
voltage of 7 V was selected as the model became instable for higher
voltages. For boundaries 3 and 4 electrical insulation is assumed.
To describe the coupling of the fluid domain with the linear elastic
deformation of the PMMA a pressure boundary load was applied
on the wall neighbouring the fluid domain (boundary 7 and 10):

r ' n ¼ !p ' n ð27Þ

where r denotes the stress and p the fluid pressure. Boundaries 1, 3,
4, 5, 6, 11, 12, 13 were set to ‘free’, which means there are no loads
or constraints acting on the boundary. The harmonic vibration of
the PMMA sets the fluid in motion and generates an acoustic wave
travelling through the fluid domain. To calculate the pressure wave,
an acceleration boundary was applied on the fluid side of the PMMA
walls to couple the vibration generated at the piezoelectric device
with the fluid domain. The acceleration boundary (boundary 7
and 10) was defined by:

!n ' ! 1
q ðrpÞ

# $
¼ !n ' a0 ð28Þ

Top and bottom of the geometry (boundaries 8 and 9) were sim-
plified by using a sound hard boundary:

!n ' ! 1
q ðrpÞ

# $
¼ 0 ð29Þ

For the transport of particles, the conservation of mass is guar-
anteed by a no flux boundary (boundary 7, 8, 9, 10) around the
fluid domain:

!n ' _Nj ¼ 0 ð30Þ

2.6. Stabilisation techniques

Eq. (21) is a convection–diffusion transport equation which be-
comes unstable for:

Pe ¼ kaPekh
2D

> 1 ð31Þ

where h is the mesh element size, D the diffusivity and aPe is the
convective term (right hand side term in Eq. (21)). A Péclet number
greater than one indicates that convective flow dominates over dif-
fusion. According to Eq. (31) stabilisation can be achieved by reduc-
ing the mesh size; however in practice this is not feasible due to
computational limitations. For instance, in order to get Pe < 1 at
1.51 MHz, a mesh element size of 2e-11 m would be required,
which is by far beyond the available computational power. Stabili-
sation was achieved with isotropic diffusion and streamline diffu-
sion, which are stabilisation techniques implemented in the
utilised software package COMSOL Multiphysics™. Isotropic diffu-
sion adds a term to the convective coefficient of the transport equa-
tion to tune the solution and smooth instabilities. Streamline
diffusion modifies the added term in a way that only adds artificial
diffusion in the direction of the flow.

2.7. Material properties

As mentioned earlier in the manuscript, the density of the water
and the polystyrene particles was set to 980 kg/m3 and 1050 kg/m3,
respectively. The dynamic viscosity of water was set to g ¼
10!3 Pa s, which represents the value for pure water at 25 #C. The

Fig. 2. Modelled one-dimensional geometry including, the transducer, the PMMA walls and the separation domain. The numbers are referring to the specific boundaries.
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polystyrene particles are assumed to be spheres with a radius of
26 lm, not affecting the overall viscosity of the suspension. The
PMMA domain was defined as an anisotropic material with data ta-
ken from the COMSOL database, i.e., a density of 1190 kg m!3, Pois-
son ratio of 0.40 and a Young’s modulus of 3 " 109 (1 + i/400) Pa.
The speeds of sound in water and in the particles were assumed
as 1481 m s!1 and 2340 m s!1, respectively. The contrast factor is
defined as [24]:

UY ¼
fþ 2=3ðf! 1Þ

1þ 2f
! 1

3fn2 ð32Þ

where f = qs/ql and n = cs/cl. The piezoelectric material is a lead zir-
conate titanate Pz26 transducer and the material properties were
introduced using data supplied by the manufacturer (http://
www.ferroperm-piezo.com). Finally, the mass fraction of particles
was set to xp = 0.01.

3. Results and discussion

As explained earlier in Section 2.4, the first modelling step
allows calculating the pressure field, velocity and acceleration of
the harmonic wave. Fig. 3 shows the pressure amplitudes for fre-
quencies of 1.51, 1.705 and 2.48 MHz. The strong changes of the
pressure amplitudes at different frequencies are caused by reso-
nance. Operating the system at frequencies close to a resonant fre-
quency will yield higher pressures. The maximum pressure
amplitude throughout the ramping process was found at
1.51 MHz. Therefore, maximum acoustic forces are found at the
lower end of ramping. These forces are drastically reduced at higher
frequencies. The majority of applied frequencies reach pressure
amplitudes in the range of 1 " 105–2 " 105 Pa, similar to the one
at 1.705 MHz shown in Fig. 3. Some resonance frequencies, which
yield pressure amplitudes much higher than the average, caused
numerical instabilities during the frequency sweep. When stabilisa-
tion could not be achieved the specific frequency was skipped while
the following frequency was then solved for an additional 0.1 s step.

In the second step, predictions of the mean square fluctuation of
the pressure <p2> and velocity <m2> are used to calculate the acous-
tic force potential given by Gork’ov’s Eq. (5). Fig. 4 depicts a qual-
itative overview of the terms contributing to the acoustic radiation
force. Values are plotted in a colour scale where red and blue col-
ours represent maximum and minimum values, respectively.
Fig. 4a illustrates the pressure amplitude on the full length of the
geometry. Fig. 4b shows a magnified wavelength. Fig. 4c and d
show the mean square fluctuation of the pressure amplitude
<p2> and the mean square fluctuation of the velocity <m2> in the
same magnified area. Both terms <p2> and <m2> are required to cal-
culate Gork’ov’s potential <URad> which is shown in Fig. 4e. The
acoustic radiation force <FRad> can finally be calculated with Eq.
(4) and its norm is shown in Fig. 4f. At the pressure nodes, where
pressure amplitude is zero, the acoustic force is also zero as it
passes from positive to negative values when moving from left to
right. This is represented by the black arrows showing how the
acoustic force pushes the particles towards the nodes. The accumu-
lation of particles on two distinct bands can be seen in Fig. 4g. The
simulation shows that the acoustic force is strong enough to locate
the particles on bands almost instantly. Only a single time step of
0.1 s was needed to accumulate particles on the nodes at 1.5 MHz.
After that, the computation of ramping shows that the bands filled
with particles moved following the movement of the nodal points.

The digital images at 0, 40 and 120 s shown in Möller et al. [21]
and Dual et al. [22] were used for validating the model predictions.
The images were imported by a purpose-developed function pro-
grammed in MATLAB™ (The Mathworks Inc., Natick, MA, USA)
and converted from the original greyscale to a false colour inten-
sity distribution, utilising the software’s imaging toolbox capabili-
ties, to visually observe the regions of maximum and minimum
concentrations of particles. Since the modelled geometry consists
of a thin cross section, a representative section of each image
was selected through an additional feature in the MATLAB™ func-
tion. This cross section was taken close to the centre of the cham-
ber where influences by the surrounding walls are minimal. In
addition, an average value for the concentration of 15 pixels in

Fig. 3. Pressure amplitudes at three different frequencies.

660 F.J. Trujillo et al. / Ultrasonics Sonochemistry 20 (2013) 655–666

Md badriadib aldrin Suhaini


http://www.ferroperm-piezo.com
http://www.ferroperm-piezo.com


y-coordinate, which equals to a distance of around 500 lm, was
calculated to minimise artefacts which may have been caused by
importing and converting the image. Furthermore, a threshold
intensity was defined as a filter mechanism to get clear particle
distributions, i.e., identifying the regions where particles were
present from the remaining liquid domain. Finally, the values were
normalised to allow for comparing them with the calculated mass
fractions. The value for normalisation was taken from the 120 s im-
age as it can be assumed that at this time the maximum concentra-
tion was reached in most bands.

Fig. 5 shows the initial condition (i.e., f = 1.5 MHz, with fully
developed bands). The figure on the left shows the greyscale image,
while the one on the right shows the converted false colour image.
It can be seen that bands of particles are clearly formed, with the
concentration of particles being higher in proximity to the trans-
ducer on the left side. At the bottom left of the image, particles
are not visible around the circular shaped hole, which is the fluids
and particle inlet. The figure also shows that some particles are

accumulated at the bottom. At the top, the bands are not as clearly
separated from each other as in the middle part. Besides, the figure
shows that the bands are not visible in some areas near the top
boundary. These effects seen in close proximity to the walls are
attributed to acoustic wave reflections. Therefore, and as indicated
above, the black line in the false colour figure was selected to track
the concentration of the bands in a position where there is minimal
disturbance of the pressure field by the walls. Fig. 6 compares the
mass fraction obtained from the experiments with that predicted
by the simulation on the bands at time t = 0 s. Only peak concen-
trations and locations, where the threshold intensity is exceeded,
are plotted to show the general trend of particles distributed with-
in the separation chamber. Including the data from all areas
throughout the chamber would not add any further beneficial
information for validating the simulated scenario. The overall
trend of the experimental data shows a maximum particle concen-
tration at around 4–5 mm with a subsequent decrease, followed by
an increase near the right hand side of the chamber. This trend is

Fig. 4. Qualitative overview of the different terms contributing to the Gork’ov equation at 1.54 MHz (blue colour indicating a minimum and red a maximum; arrows show the
force vector of the acoustic radiation force; T = Transducer, P = PMMA). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Images for time t = 0 s in greyscale (left) and as false colour intensity distribution (right) with arrows indicating the movement direction of the bands and the black line
indicating the points where the experimental data was extracted (Transducer on the left side of each image). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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also observed in the simulated scenario, although the predicted
particle concentration is higher than that of the experiment.

Fig. 7 displays images at 40 s. It shows that in just 2 completed
ramps from 1.5 to 2.5 MHz, most of the particles in close proximity
to the transducer have migrated to the middle of the separation
chamber. Additionally, the particles close to the bottom of the im-
age, which were observed on the image at 0 s (c.f., Fig 5), are still
accumulated at the bottom without further movement to the right.
Particles along the black line clearly show a displacement of the
bands towards the right hand side. Furthermore, particles at the
top, which did not form clear bands on the previous pictures, are
now well aligned within the bands. Fig. 8 shows the experimen-
tally determined and calculated peak particle concentration (mass
fraction) and location of the bands at 40 s. Peaks from Fig. 7 that
are below the threshold setting are not plotted in Fig. 8. These
peaks below the threshold are visible in Fig. 7 as light blue lines
close to the transducer. Fig. 8 shows peaks of high concentration
between 10 and 14 mm. After 14 mm the concentration within
the bands decreases. The model followed the trend of the experi-
mental data although the modelled concentrations are generally
higher. This is because the acoustic force is higher than the

diffusive force except when the concentration approaches satura-
tion. Hence, the mathematical model tends to over predict the
maximum concentration of the bands. To correct this problem
Eq. (23) was introduced aiming at balancing the acoustic force at
high concentration of particles. The first visible band is around
7 mm for the experiment as well as the simulation. The strongest
deviation between the experimental and modelled data is located
on the left side where the concentration of particles is lower than
the calculated concentration. Overall, the trend in the experimen-
tal data is in good agreement with the simulation also at the 40 s
time step.

Fig. 9 shows the images at the final time step of 120 s. It can be
seen that after 6 complete frequency sweeps most particles are
located near the reflective wall on the right hand side. Fig. 10
displays the experimentally determined and predicted location of
the bands, as well as the peak concentrations at 120 s. Again, the
particles visible as light blue lines in the false-colour image were
filtered out. The location is in good agreement with the experimen-
tal data, although the calculated concentration of the bands on the
left is lower than that of the experiment. Fig. 11 displays the exper-
imental and modelled location of bands for all three time steps, i.e.,

Fig. 6. Comparison of the initial condition for the simulation and experiment at time t = 0 s.

Fig. 7. Images at 40 s in greyscale (left) and as false colour intensity distribution (right) with arrows indicating the movement direction of the bands and the black line
indicating the points where the experimental data was extracted (Transducer on the left side of each image). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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at the times 0, 40 and 120 s (or 0, 2 and 6 complete frequency
sweeps). The figure shows an excellent agreement between pre-
dicted and experimentally determined data. It is concluded that
while modelling the pressure fields may suffice to determine the
nodal points where the particles bands are formed, only when solv-
ing the transient transport of concentrated species (c.f., Eq. (21)) it
can be revealed how the particles get quickly concentrated at the
nodes, thus, confirming the observed movement of the bands.
Hence, the model is accurately describing the effect of the acoustic
force on the particles as it shows how the acoustic force effectively
moves and locates particles on the nodes.

Fig. 12 shows the trajectory of particles located on the first band
on the left hand side. On the figure, displacement is referred as the
distance between the wall on the transducer side and the first band
of particles. As can be seen, a particle located in the first band expe-
riences a steep increase in displacement of up to 3 mm for the first
6.2 s followed by a backward movement until the end of the first
sweep cycle at 20 s, which was also observed in the experiments.
A similar behaviour, where the displacement of particles increases

but then moves backwards, is also observed in the second
frequency ramp (20–40 s). For subsequent frequency ramps after
40 s, only positive displacement of particles is observed. The figure
also shows that the rate of increase of displacement steadily
reduces for subsequent ramps after 40 s. It is expected that
ramping beyond 120 s will lead to a steady state, where no net dis-
placement will be observed. This is in agreement with Lipkens
et al. [25], who developed an electroacoustic model to study the ef-
fect of frequency sweeping on the trajectory of particles. They
found that the effect of ramping is to displace the particles away
from the transducer towards the reflector. However, in the vicinity
of the reflector, particles do not undergo a net translation but
merely oscillate with the frequency sweeps. Hence, the model
can be used to determine the number of ramps necessary to
approach steady state where particles are located on bands on
the close vicinity of the reflector, and where there is no net
translation of particles as repeating frequency sweeps beyond this
point does not lead to further separation but only oscillations on
the trajectory of the particles.

Fig. 8. Comparison of simulation and experiment at 40 s.

Fig. 9. Images at 120 s in greyscale (left) and as false colour intensity distribution (right) with arrows indicating the movement direction of the bands and the black line
indicating the points where the experimental data was extracted (Transducer on the left side of each image). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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The backward movement exhibited during the first 2 ramps can
be explained with Fig. 13. As seen in Fig. 12, the displacement of a
particle located on the first band reaches a maximum at 6.2 s. After
that, particles start moving backwards until the end of the first
ramp at 20 s. Fig. 13 displays the pressure waves from 6.2 to
6.7 s in steps of 0.1 s. At 6.2 s, a particle located on the grey circle
is trapped in the pressure node of the wave illustrated with a black
line. At 6.3 s (red line) the pressure node (black circle) has moved
0.5 " 10!4 m to the right of the grey circle. The calculated convec-
tive velocity for this time step is 10!4 m s!1 moving towards the
black pressure node. At this velocity, a particle located at the grey
circle would take 0.5 s to reach the black pressure node. Therefore,

in a time step of 0.1 s, there is not enough time for the particle to
follow the pressure node. The particle will consequently lag behind
the pressure node. The model shows that the particle will only tra-
vel 0.5 " 10!4 m between 6.2 and 6.7 s, approaching the black cir-
cle. At 6.7 s however, the closest pressure node of the standing
wave (light blue line) will be located at the left hand side of the
particle now located on the black circle. The vertical black line
on the figure indicates the pressure antinode of the pressure wave
at 6.7 s. That line demarcates the change on the direction of the
acoustic force. The particle located on the black circle will, there-
fore, be moved towards the left hand side, explaining the backward
movement. The backward movement for the second ramp can be

Fig. 10. Comparison of simulation and experiment at 120 s.

Fig. 11. Comparison of predicted and measured location of particle bands.
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explained the same way. A possible solution for the initial back-
ward movement would be to increase the acoustic force by
increasing the voltage or by increasing the period of ramping.
However, it should be noted that increasing the voltage higher
than 7 V produce numerical instability because of the increase of
the Péclet number.

4. Conclusion

The mass transport equation was modified to account for the
effect of the acoustic forces on the concentration of particles. The
proposed methodology allows modelling changes of concentration
of particles on the physical domain. This approach is an alternative
to modelling the movement of single particles, and it is, therefore,
more suitable for larger scale applications where more pronounced
gradients on the acoustic field and particle concentration are pres-
ent. Besides, it is more efficient to model the changes on concentra-
tion than modelling the path of single particles at different initial
positions to map the final concentrations as proposed by Town-
send et al. [18]. The mass transport equation was successfully cou-
pled with the time harmonic pressure acoustics model, allowing

the calculation of acoustic pressure, acoustic force and changes of
the concentration of particles with time when sweeping the fre-
quency following a sawtooth pattern. The model works well at
low voltages and low initial concentration of particles, particularly,
since higher voltages and higher concentrations cause high acous-
tic forces that leads to numerical instabilities. This is because the
acoustic forces rapidly localize particles at the nodes while the cal-
culated diffusivity approaches infinity as the concentration of par-
ticles approaches saturation (c.f., Eq. (23)). Eqs. (23) and (21)
indicate that when the concentration of particles has reached sat-
uration, the diffusive force will rise to balance the acoustic force so
that no further increase of the concentration of particles can be
achieved. In other words, once the bands are filled with particles,
the diffusive and convective forces on Eq. (21) must be balanced:

!DrðxpqTÞ !
rURad

CD
ðxpqTÞ ¼ 0 ð33Þ

Introducing inconsistent stabilisation techniques allowed sta-
bilising the model at low voltages and low concentration of parti-
cles. However, the model is unstable at higher voltages and higher
particles concentrations.

Fig. 12. Trajectory of the particles located on the band closest to the transducer during the ramping process (Displacement = distance between transducer and first band on
the left hand side).

Fig. 13. Pressure amplitudes for 6.2–6.7 s, including the particle locations (6.2 s = grey circle, 6.6 s = black circle, 6.7 s = red circle) at the different time steps and the force
vector for 6.7 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The digital images revealed gradients of concentration on the
y-direction towards the top and bottom of the geometry. This ef-
fect is attributed to reflections on the walls. The model did not take
into account the influence of the PMMA bordering the top and bot-
tom of the separation chamber due to the need of an extremely fine
mesh that could not be solved with the available computational
power. Overall, the predicted concentration of particle is in good
agreement with the experimental data as it follows accurately
the movement of the bands in the centre of the chamber. This is
in spite of the simplifications of the model geometry and the need
to run the model at lower voltage and lower initial concentration
to achieve stabilisation. The model reveals a partial backward
movement for the first 2 ramps. This was visually observed
although it was not recorded on photographs. The model was used
to explain that phenomenon in terms of the relationship between
the acoustic force and the period of ramping. Hence, the simulation
can give information to determine the period of ramping and volt-
age that reduce backward movement of particles. To the best of our
knowledge, this is the first attempt to modify the mass transfer
equation to determine the changes of concentration due to acous-
tic forces on the whole domain, which was successfully realised as
shown by the good agreement with the data extracted from the
digital photographs. It should be noted that there is still much to
discover in the field of ultrasonic separation processes; particularly
concerning simulations, where most of the modelling work has
focused on determining the trajectory of single particles; but even
more so in applications, where particles may agglomerate or even
coalesce when approaching each other. This will lead to significant
changes in the acoustic, drag and buoyancy forces, as well as the
particles’ diffusion behaviour.
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