Chapter 9

Extension, Torsion and Flexure of Elastic Cylinders

Prismatic Bar Subjected to End Loadings

Semi-Inverse Method

$$
\text { Assume: } \sigma_{x}=\sigma_{y}=\tau_{x y}=0
$$

Equilibrium Equations \Rightarrow

$$
\frac{\partial \tau_{x z}}{\partial z}=\frac{\partial \tau_{y z}}{\partial z}=0
$$

Compatibilty Equations \Rightarrow

$$
\frac{\partial^{2} \sigma_{z}}{\partial x^{2}}=\frac{\partial^{2} \sigma_{z}}{\partial y^{2}}=\frac{\partial^{2} \sigma_{z}}{\partial z^{2}}=\frac{\partial^{2} \sigma_{z}}{\partial x \partial y}=0
$$

Integrating \Rightarrow

$$
\sigma_{z}=C_{1} x+C_{2} y+C_{3} z+C_{4} x z+C_{5} y z+C_{6}
$$

Extension of Cylinders

Assumptions

- Load P_{z} is applied at centroid of crosssection so no bending effects
- Using Saint-Venant Principle, exact end tractions are replaced by statically equivalent uniform loading
- Thus assume stress σ_{z} is uniform over any cross-section throughout the solid

$$
\begin{aligned}
& \Rightarrow \sigma_{z}=\frac{P_{z}}{A}, \tau_{x z}=\tau_{y z}=0 \\
& \text { and } \sigma_{x}=\sigma_{y}=\tau_{x y}=0
\end{aligned}
$$

Using stress results into Hooke's law and combining with the straindisplacement relations gives
$\frac{\partial u}{\partial x}=-\frac{v P_{z}}{A E}, \frac{\partial v}{\partial y}=-\frac{v P_{z}}{A E}, \frac{\partial w}{\partial z}=\frac{P_{z}}{A E}$
$\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0, \frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}=0, \frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}=0$

Integrating and dropping rigid-body motion terms such that displacements vanish at origin

$$
\begin{aligned}
u & =-\frac{v P_{z}}{A E} x \\
v & =-\frac{v P_{z}}{A E} y \\
w & =\frac{P_{z}}{A E} z
\end{aligned}
$$

Torsion of Cylinders

Guided by Observations from Mechanics of Materials

- projection of each section on x, y-plane rotates as rigid-body about central axis
- amount of projected section rotation is linear function of axial coordinate
- plane cross-sections will not remain plane after deformation thus leading to a warping displacement ELSEVIER

Torsional Deformations

$$
\begin{gathered}
\begin{array}{c}
u=-r \beta \sin \theta=-\beta y \\
v=r \beta \cos \theta=\beta x \\
\beta=\alpha z \\
\alpha=\text { angle of twist per unit length } \\
u=-\alpha y z \\
\Rightarrow \quad v=\alpha x z \\
w=w(x, y)
\end{array} \\
w=\text { warping displacement }
\end{gathered}
$$

Now must show assumed displacement form will satisfy all elasticity field equations

Stress Function Formulation

$$
\begin{aligned}
& u=-\alpha y z \\
& v=\alpha x z \\
& w=w(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& e_{x}=e_{y}=e_{z}=e_{x y}=0 \\
& \sigma_{x}=\sigma_{y}=\sigma_{z}=\tau_{x y}=0 \\
& e_{x z}=\frac{1}{2}\left(\frac{\partial w}{\partial x}-\alpha y\right) \\
& e_{y z}=\frac{1}{2}\left(\frac{\partial w}{\partial y}+\alpha x\right) \\
& \tau_{x z}=\mu\left(\frac{\partial w}{\partial x}-\alpha y\right) \\
& \tau_{y z}=\mu\left(\frac{\partial w}{\partial y}+\alpha x\right)
\end{aligned}
$$

Equilibrium Equations

$$
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}=0 \quad \frac{\partial \tau_{x z}}{\partial y}-\frac{\partial \tau_{y z}}{\partial x}=-2 \mu \alpha
$$

Introduce Prandtl Stress Function $\phi=\phi(x, y): \quad \tau_{x z}=\frac{\partial \phi}{\partial y}, \tau_{y z}=-\frac{\partial \phi}{\partial x}$
Equilibrium will be identically satisfied and compatibility relation gives

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-2 \mu \alpha
$$

a Poisson equation that is amenable to several analytical solution techniques

Boundary Conditions Stress Function Formulation

On Lateral Side: S

$$
\begin{aligned}
& T_{x}^{n}=\varnothing_{x}^{n} n_{x}+\tau \tau_{y x} n_{y}+\tau \not n_{z}=0 \Rightarrow 0=0 \\
& T_{y}^{n}=\tau त_{x y} n_{x}+\sigma n_{y}+\tau_{z} \boldsymbol{R}_{z}=0 \Rightarrow 0=0 \\
& T_{z}^{n}=\tau_{x z} n_{x}+\tau_{y z} n_{y}+\sigma \not R_{z}=0 \Rightarrow \\
& \frac{\partial \phi}{\partial x} \frac{d x}{d s}+\frac{\partial \phi}{\partial y} \frac{d y}{d s}=0 \Rightarrow \frac{d \phi}{d s}=0 \Rightarrow \phi=\text { constant }=0 \\
& \quad \text { On End: } R(z=\text { constant }) \\
& P_{x}=\iint_{R} T_{x}^{n} d x d y=0 \\
& P_{y}=\iint_{R} T_{y}^{n} d x d y=0 \\
& P_{z}=\iint_{R} T_{z}^{n} d x d y=0 \\
& M_{x}=\iint_{R} y T_{z}^{n} d x d y=0 \\
& M_{y}=\iint_{R} x T_{z}^{n} d x d y=0 \\
& M_{z}=\iint_{R}\left(x T_{y}^{n}-y T_{x}^{n}\right) d x d y=T \Rightarrow T=2 \iint_{R} \phi d x d y
\end{aligned}
$$

Displacement Formulation

$$
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}=0 \quad \Rightarrow \quad \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=0
$$

Displacement component satisfies Laplace's equation
On Lateral Side: S

$$
\begin{gathered}
T_{z}^{n}=\tau_{x z} n_{x}+\tau_{y z} n_{y}+\sigma_{z} n_{z}=0 \Rightarrow \\
\left(\frac{\partial w}{\partial x}-y \alpha\right) n_{x}+\left(\frac{\partial w}{\partial y}+x \alpha\right) n_{y}=0 \text { or } \frac{d w}{d n}=\alpha\left(y n_{x}-x n_{y}\right)
\end{gathered}
$$

On End: R

$$
\begin{gathered}
M_{z}=\iint_{R}\left(x T_{y}^{n}-y T_{x}^{n}\right) d x d y=T \Rightarrow \\
T=\mu \iint_{R}\left(\alpha\left(x^{2}+y^{2}\right)+x \frac{\partial w}{\partial y}-y \frac{\partial w}{\partial x}\right) d x d y \\
T=\alpha J \quad J=\mu \iint_{R}\left(x^{2}+y^{2}+\frac{x}{\alpha} \frac{\partial w}{\partial y}-\frac{y}{\alpha} \frac{\partial w}{\partial x}\right) d x d y \ldots \text { TorsionalRigidity }
\end{gathered}
$$

Formulation Comparison

Stress Function Formulation

$$
\begin{gathered}
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-2 \mu \alpha \in R \\
\phi=0 \in S
\end{gathered}
$$

Relatively Simple Governing Equation Very Simple Boundary Condition

Displacement Formulation

$$
\begin{gathered}
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=0 \in R \\
\left(\frac{\partial w}{\partial x}-y \alpha\right) n_{x}+\left(\frac{\partial w}{\partial y}+x \alpha\right) n_{y}=0 \in S
\end{gathered}
$$

Very Simple Governing Equation Complicated Boundary Condition

Multiply Connected Cross-Sections

Boundary conditions of zero tractions on all lateral surfaces apply to external boundary S_{o} and all internal boundaries S_{1}, \ldots Stress function will be a constant and displacement be specified as per (9.3.20) or (9.3.21) on each boundary S_{i}, $i=0,1, \ldots$

$$
\phi=\phi_{i} \in S_{i} \text { or }\left(\frac{\partial w}{\partial x}-y \alpha\right) n_{x}+\left(\frac{\partial w}{\partial y}+x \alpha\right) n_{y}=0 \in S_{i}
$$

where ϕ_{i} are constants. Value of ϕ_{i} may be arbitrarily chosen only on one boundary, commonly taken as zero on S_{0}.
Constant stress function values on each interior boundary are found by requiring displacements w to be single-valued, expressed by

$$
\oint_{S_{1}} d w(x, y)=0 \Rightarrow \oint_{S_{1}} \tau d s=2 \mu \alpha A_{1} \text { where } A_{1} \text { is area enclosed by } S_{1}
$$

Value of ϕ_{1} on inner boundary S_{1} must therefore be chosen so that relation is satisfied. If crosssection has more than one hole, relation must be satisfied for each hole.
Boundary conditions on cylinder ends will be satisfied, and resultant torque condition will give

$$
T=2 \iint_{R} \phi d x d y+2 \phi_{1} A_{1}
$$

Membrane Analogy

Stress function equations are identical to those governing static deflection of an elastic membrane under uniform pressure. This creates an analogy between the two problems, and enables particular features from membrane problem to be used to aid solution of torsion problem. Generally used to providing insight into qualitative features and to aid in developing approximate solutions.

Membrane Equations

$$
\begin{gathered}
\sum F_{z}=0 \Rightarrow \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=-\frac{p}{N} \\
z=0 \text { on } S \\
V=\iint_{R} z d x d y
\end{gathered}
$$

Torsion Equations

$$
\begin{gathered}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-2 \mu \alpha \\
\phi=0 \text { on } S \\
T=2 \iint_{R} \phi d x d y
\end{gathered}
$$

Equations are same with: $\phi=z, p / N=2 \mu \alpha, T=2 V$

Elasticity Theory, Applications and Numerics

 M.H. Sadd , University of Rhode Island
Torsion Solutions Derived from Boundary Equation

Boundary - Value Problem

$$
\begin{gathered}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-2 \mu \alpha \in R \\
\phi=0 \in S
\end{gathered}
$$

If boundary is expressed by relation $f(x, y)=0$, this suggests possible simple solution scheme of expressing stress function as $\phi=K f(x, y)$ where K is arbitrary constant. Form satisfies boundary condition on S, and for some simple geometric shapes it will also satisfy the governing equation with appropriate choice of K. Unfortunately this is not a general solution method and works only for special cross-sections of simple geometry.

Example 9.1 Elliptical Section

Look for Stress Function Solution $\phi=K\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)$
ϕ satisfies boundary condition and will satisfy governing governing if $K=-\frac{a^{2} b^{2} \mu \alpha}{a^{2}+b^{2}}$
Since governing equation and boundary condition are satisfied, we have found solution

Elliptical Section Results

(Stress Function Contours)

Stress Field

$$
\begin{aligned}
& \tau_{x z}=-\frac{2 a^{2} \mu \alpha}{a^{2}+b^{2}} y=-\frac{2 T y}{\pi a b^{3}} \\
& \tau_{y z}=\frac{2 b^{2} \mu \alpha}{a^{2}+b^{2}} x=\frac{2 T x}{\pi b a^{3}} \\
& \tau=\sqrt{\tau_{x z}^{2}+\tau_{y z}^{2}}=\frac{2 T}{\pi a b} \sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}}
\end{aligned}
$$

(Displacement Contours)
Displacement Field

$$
w=\frac{T\left(b^{2}-a^{2}\right)}{\pi a^{3} b^{3} \mu} x y
$$

Loading Carrying Capacity

Angle of Twist

$$
\begin{gathered}
\tau_{\max }=\tau(0, \pm b)=\frac{2 T}{\pi a b^{2}} \quad T=-\frac{2 a^{2} b^{2} \mu \alpha}{a^{2}+b^{2}}\left(\frac{1}{a^{2}} \iint_{R} x^{2} d x d y+\frac{1}{b^{2}} \iint_{R} y^{2} d x d y-\iint_{R} d x d y\right) \\
T=\frac{\pi a^{3} b^{3} \mu \alpha}{a^{2}+b^{2}} \quad \text { or } \alpha=\frac{T\left(a^{2}+b^{2}\right)}{\pi a^{3} b^{3} \mu}
\end{gathered}
$$

Elliptical Section Results 3-D Warping Displacement Contours

Example 9.2 Equilateral Triangular Section

For stress function try product form of each boundary line equation

$$
\phi=K(x-\sqrt{3} y+2 a)(x+\sqrt{3} y+2 a)(x-a)
$$

ϕ satisfies boundary condition and will satisfy governing governing if $K=-\frac{\mu \alpha}{6 a}$
Since governing equation and boundary condition are satisfied, we have found solution

Equilateral Triangular Section Results

(Stress Function Contours)

Stress Field

$$
\begin{aligned}
& \tau_{x z}=\frac{\mu \alpha}{a}(x-a) y \\
& \tau_{y z}=\frac{\mu \alpha}{2 a}\left(x^{2}+2 a x-y^{2}\right) \\
& \tau_{\max }=\tau_{y z}(a, 0)=\frac{3}{2} \mu \alpha a=\frac{5 \sqrt{3} T}{18 a^{3}}
\end{aligned}
$$

(Displacement Contours)

Displacement Field

$$
w=\frac{\alpha}{6 a} y\left(3 x^{2}-y^{2}\right)
$$

Loading Carrying Capacity Angle of Twist

$$
T=\frac{27}{5 \sqrt{3}} \mu \alpha a^{4}=\frac{3}{5} \mu \alpha I_{p}
$$

Additional Examples That Allow Simple Solution Using Boundary Equation Scheme

Section with Higher Order Polynomial Boundary (Example 9-3)

$$
\begin{gathered}
\phi=K\left(a^{2}-x^{2}+c y^{2}\right)\left(a^{2}+c x^{2}-y^{2}\right) \\
K=-\frac{\mu \alpha}{4 a^{2}(1-\sqrt{2})}, c=3-\sqrt{8} \\
\tau_{\max }=\tau(\pm a, 0)=\tau(0, \pm a)=\sqrt{2} \mu \alpha a
\end{gathered}
$$

Circular Shaft with Circular
Keyway (Exercise 9-22/23)
$\phi=\frac{\mu \alpha}{2}\left(b^{2}-r^{2}\right)\left(1-\frac{2 a \cos \theta}{r}\right)$
As $b / a \rightarrow 0 \frac{\left(\tau_{\max }\right)_{\text {keyway }}}{\left(\tau_{\max }\right)_{\text {solidshaft }}} \rightarrow \frac{2 \mu \alpha a}{\mu \alpha a}=2$
\therefore Stress Concentration of 2

Examples That Do Not Allow Simple Solution Using Boundary Equation Scheme

Example 9.4 Rectangular Section Fourier Method Solution

Previous boundary equation scheme will not create a stress function that satisfies the governing equation. Thus we must use a more fundamental solution technique - Fourier method. Thus look for stress function solution of the standard form

$$
\phi=\phi_{h}+\phi_{p} \quad \text { with } \quad \phi_{p}(x, y)=\mu \alpha\left(a^{2}-x^{2}\right)
$$

homogeneous solution must then satisfy

$$
\nabla^{2} \phi_{h}=0, \phi_{h}(\pm a, y)=0, \phi_{h}(x, \pm b)=-\mu \alpha\left(a^{2}-x^{2}\right)
$$

Separation of Variables Method $\Rightarrow \phi_{h}(x, y)=X(x) Y(y) \Rightarrow \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=-2 \mu \alpha$

$$
\begin{gathered}
\Rightarrow \phi_{h}(x, y)=\sum_{n=1}^{\infty} B_{n} \cos \frac{n \pi x}{2 a} \cosh \frac{n \pi y}{2 a} \quad B_{n}=-32 \mu \alpha a^{2}(-1)^{(n-1) / 2} /\left(n^{3} \pi^{3} \cosh \frac{n \pi b}{2 a}\right) \\
\phi=\mu \alpha\left(a^{2}-x^{2}\right)-\frac{32 \mu \alpha a^{2}}{\pi^{3}} \sum_{n=1,3,5 \cdots}^{\infty} \frac{(-1)^{(n-1) / 2}}{n^{3} \cosh \frac{n \pi b}{2 a}} \cos \frac{n \pi x}{2 a} \cosh \frac{n \pi y}{2 a}
\end{gathered}
$$

Rectangular Section Results

Stress Field

$$
\begin{aligned}
& \tau_{x z}= \frac{\partial \phi}{\partial y}=-\frac{16 \mu \alpha a}{\pi^{2}} \sum_{n=1,3,5 \cdots}^{\infty} \frac{(-1)^{(n-1) / 2}}{n^{2} \cosh \frac{n \pi b}{2 a}} \cos \frac{n \pi x}{2 a} \sinh \frac{n \pi y}{2 a} \\
& \tau_{y z}=-\frac{\partial \phi}{\partial x}=2 \mu \alpha x-\frac{16 \mu \alpha a}{\pi^{2}} \sum_{n=1,3,5 \cdots}^{\infty} \frac{(-1)^{(n-1) / 2}}{n^{2} \cosh \frac{n \pi b}{2 a}} \sin \frac{n \pi x}{2 a} \cosh \frac{n \pi y}{2 a} \\
& \tau_{\max }=\tau_{y z}(a, 0)=2 \mu \alpha a-\frac{16 \mu \alpha a}{\pi^{2}} \sum_{n=1,3,5 \cdots}^{\infty} \frac{1}{n^{2} \cosh \frac{n \pi b}{2 a}}
\end{aligned}
$$

Loading Carrying Capacity/Angle of Twist

$$
\begin{gathered}
T=\frac{16 \mu \alpha a^{3} b}{3}-\frac{1024 \mu \alpha a^{4}}{\pi^{5}} \sum_{n=1,3,5 \cdots}^{\infty} \frac{1}{n^{5}} \tanh \frac{n \pi b}{2 a} \\
\text { Displacement Field } \\
w=\alpha x y-\frac{32 \alpha a^{2}}{\pi^{3}} \sum_{n=1,3,5 \cdots}^{\infty} \frac{(-1)^{(n-1) / 2}}{n^{3} \cosh \frac{n \pi b}{2 a}} \sin \frac{n \pi x}{2 a} \sinh \frac{n \pi y}{2 a}
\end{gathered}
$$

Rectangular Section Results

Elasticity Theory, Applications and Numerics
M.H. Sadd , University of Rhode Island

Torsion of Thin Rectangular Sections (a<<b)

Composite Sections

(Stress Function Contours)

Torsion of sections composed of thin rectangles. Neglecting local regions where rectangles are joined, we can use thin rectangular solution over each section. Stress function contours shown justify these assumptions. Thus load carrying torque for such composite section will be given by

$$
T=\frac{16}{3} \mu \alpha \sum_{i=1}^{N} a_{i}^{3} b_{i}
$$

Example 9.5 Hollow Elliptical Section

For this case lines of constant shear stress coincide with both inner and outer boundaries, and so no stress will act on these lateral surfaces. Therefore, hollow section solution is found by simply removing inner core from solid solution. This gives same stress function and stress distribution in remaining material.

$$
\phi=-\frac{a^{2} b^{2} \mu \alpha}{a^{2}+b^{2}}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)
$$

Constant value of stress function on inner boundary is $\phi_{i}=-\frac{a^{2} b^{2} \mu \alpha}{a^{2}+b^{2}}\left(k^{2}-1\right)$
Load carrying capacity is determined by subtracting load carried by the removed inner cylinder from the torque relation for solid section

$$
T=\frac{\pi a^{3} b^{3} \mu \alpha}{a^{2}+b^{2}}-\frac{\pi(k a)^{3}(k b)^{3} \mu \alpha}{(k a)^{2}+(k b)^{2}}=\frac{\pi \mu \alpha}{a^{2}+b^{2}} a^{3} b^{3}\left(1-k^{4}\right)
$$

Maximum stress still occurs at $x=0$ and $y= \pm b \quad \tau_{\max }=\frac{2 T}{\pi a b^{2}} \frac{1}{1-k^{4}}$

Hollow Thin-Walled Tube Sections

(Section $a a$)

With $t \ll 1$ implies little variation in membrane slope, and $B C$ can be approximated by a straight line. Since membrane slope equals resultant shear stress

$$
\tau=\frac{\phi_{o}}{t}
$$

Load carrying relation: $T=2 \iint_{R} \phi d x d y+2 \phi_{o} A_{i}=2\left(A \frac{\phi_{o}}{2}\right)+2 \phi_{o} A_{i}=2 \phi_{o} A_{c}$
where $A=$ section area, $A_{i}=$ area enclosed by inner boundary, $A_{c}=$ area enclosed by centerline

$$
\text { Combining relations } \Rightarrow \tau=\frac{T}{2 A_{c} t}
$$

Angle of twist: $\oint_{S_{c}} \tau d s=2 \mu \alpha A_{c} \Rightarrow \alpha=\frac{T S_{c}}{4 A_{c}^{2} \mu t}$
where $S_{c}=$ length of tube centerline

Cut Thin-Walled Tube Sections

Cut creates an open tube and produces significant changes to stress function, stress field and load carrying capacity. Open tube solution can be approximately determined using results from thin rectangular solution. Stresses for open and closed tubes can be compared and for identical applied torques, the following relation can be established (see Exercise 9-24)
$\frac{\tau_{\text {OpenTube }}}{\tau_{\text {ClosedTube }}} \approx \frac{\frac{3}{2} \frac{T}{a A_{s}}}{\frac{T}{2 A_{c} t}} \approx 6 \frac{A_{c}}{A_{s}}$, but since $A_{c} \gg A_{s} \Rightarrow \frac{\tau_{\text {OpenTube }}}{\tau_{\text {ClosedTube }}} \gg 1 \Rightarrow \tau_{\text {OpenTube }} \gg \tau_{\text {ClosedTube }}$
\therefore Stresses are higher in open tube and thus closed tube is stronger

Torsion of Circular Shafts of Variable Diameter

Displacement Assumption

$$
\begin{aligned}
& u_{r}=u_{z}=0 \\
& u_{\theta}=u_{\theta}(r, z)
\end{aligned}
$$

$$
\begin{array}{ll}
e_{r}=e_{\theta}=e_{z}=e_{r z}=0 & \sigma_{r}=\sigma_{\theta}=\sigma_{z}=\tau_{r z}=0 \\
e_{r \theta}=\frac{1}{2}\left(\frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r}\right), e_{\theta z}=\frac{1}{2} \frac{\partial u_{\theta}}{\partial z} & \tau_{r \theta}=\mu\left(\frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r}\right), \tau_{\theta z}=\mu \frac{\partial u_{\theta}}{\partial z}
\end{array}
$$

$$
\text { Equilibrium Equations } \quad \frac{\partial}{\partial r}\left[r^{3} \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)\right]+\frac{\partial}{\partial z}\left[r^{3} \frac{\partial}{\partial z}\left(\frac{u_{\theta}}{r}\right)\right]=0
$$

$$
\begin{aligned}
& \text { Stress Function Approach } \Rightarrow \begin{array}{l}
\frac{\partial \Psi}{\partial z}=-r^{3} \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)=-\frac{r^{2}}{\mu} \tau_{r \theta} \\
\frac{\partial \Psi}{\partial r}=r^{3} \frac{\partial}{\partial z}\left(\frac{u_{\theta}}{r}\right)=\frac{r^{2}}{\mu} \tau_{\theta z}
\end{array} \Rightarrow \begin{array}{l}
\frac{\partial^{2} \Psi}{\partial r^{2}}-\frac{3}{r} \frac{\partial \Psi}{\partial r}+\frac{\partial^{2} \Psi}{\partial z^{2}}=0
\end{array} \\
& \text { Boundary Condition }
\end{aligned} \quad \begin{aligned}
& \text { Load Carrying Torque }
\end{aligned}
$$

Conical Shaft Example 9-7

Stress Function Solution

$$
\Psi=C\left(\frac{z}{\sqrt{r^{2}+z^{2}}}-\frac{1}{3} \frac{z^{3}}{\left(r^{2}+z^{2}\right)^{3 / 2}}\right) \quad C=-\frac{T}{2 \pi \mu\left(\frac{2}{3}-\cos \varphi+\frac{1}{3} \cos ^{3} \varphi\right)}
$$

Stresses

$$
\begin{aligned}
& \tau_{r \theta}=-\frac{C \mu r^{2}}{\left(r^{2}+z^{2}\right)^{5 / 2}} \\
& \tau_{\theta z}=-\frac{C \mu r z}{\left(r^{2}+z^{2}\right)^{5 / 2}}
\end{aligned}
$$

Displacement

$$
u_{\theta}=-\frac{C r}{3\left(r^{2}+z^{2}\right)^{3 / 2}}+\omega r
$$

ωr is rigid-body rotation about z-axis and ω can be determined by specifying shaft rotation at specific z-location

Conical Shaft Example 9-7 $\varphi=30^{\circ}$ Comparison with Mechanics of Materials

Numerical FEA Torsion Solutions

ELSEVIER

Flexure of Cylinders

Consider flexure of cantilever beam of arbitrary section with fixed end at $z=0$ and transverse end loadings P_{x} and P_{y} at $z=\ell$. Problem is solved in Saint-Venant sense, so only resultant end loadings P_{x} and P_{y} will be used to formulate boundary conditions at $z=\ell$.
From general formulation $\sigma_{x}=\sigma_{y}=\tau_{x y}=0$, and motivated from strength of materials choose $\sigma_{z}=(B x+C y)(l-z)$, where B and C are constants. Stresses τ_{xz} and τ_{yz} will be determined to satisfy equilibrium and compatibility relations and all boundary conditions.
Remaining equilibrium equation $\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}-(B x+C y)=0$ will be identically satisfied if we introduce stress function $F(x, y)$ such that $\tau_{x z}=\frac{\partial F}{\partial y}+\frac{1}{2} B x^{2}$

$$
\tau_{y z}=-\frac{\partial F}{\partial x}+\frac{1}{2} C y^{2}
$$

Flexure Formulation

Remaining Beltrami-Michell Compatibility Relations

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(\nabla^{2} F\right)+\frac{v B}{1+v}=0 \\
& -\frac{\partial}{\partial x}\left(\nabla^{2} F\right)+\frac{v C}{1+v}=0
\end{aligned} \Rightarrow \nabla^{2} F=\frac{v}{1+v}(C x-B y)-2 \mu \alpha
$$

Zero Loading Boundary Condition on Lateral Surface S

$$
\tau_{x z} n_{x}+\tau_{y z} n_{y}=0 \Rightarrow \frac{d F}{d s}=-\frac{1}{2}\left(B x^{2} \frac{d y}{d s}-C y^{2} \frac{d x}{d s}\right)
$$

Separate Stress Function Finto Torsional Part ϕ and Flexural Part ψ

$$
\begin{array}{rlrl}
& F(x, y)=\phi(x, y)+\psi(x, y) \\
\nabla^{2} \phi & =-2 \mu \alpha \text { in } R & \nabla^{2} \psi & =\frac{v}{1+v}(C x-B y) \text { in } R \\
\frac{d \phi}{d s} & =0 \text { on } S & \frac{d \psi}{d s} & =-\frac{1}{2}\left(B x^{2} \frac{d y}{d s}-C y^{2} \frac{d x}{d s}\right) \text { on } S
\end{array}
$$

Flexure Formulation

$$
\begin{aligned}
& \text { General solution to } \nabla^{2} \psi=\frac{v}{1+v}(C x-B y) \Rightarrow \\
& \psi(x, y)=f(x, y)+\frac{1}{6} \frac{v}{1+v}\left(C x^{3}-B y^{3}\right) \text { where } \nabla^{2} f=0
\end{aligned}
$$

Boundary Conditions on end $z=l$

$$
\begin{aligned}
& \iint_{R} \tau_{x z} d x d y=P_{x} \\
& \iint_{R} \tau_{y z} d x d y=P_{y}
\end{aligned} \Rightarrow \begin{aligned}
& B I_{y}+C I_{x y}=-P_{x} \\
& B I_{x y}+C I_{x}=-P_{y}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& B=-\frac{P_{x} I_{x}-P_{y} I_{x y}}{I_{x} I_{y}-I_{x y}^{2}} \\
& C=-\frac{P_{y} I_{y}-P_{x} I_{x y}}{I_{x} I_{y}-I_{x y}^{2}}
\end{aligned}
$$

where I_{x}, I_{y} and $I_{x y}$ are the area moments of inertia of section R

$$
\begin{gathered}
\iint_{R}\left[x \tau_{y z}-y \tau_{x z}\right] d x d y=x_{o} P_{y}-y_{o} P_{x} \\
\alpha J+\iint_{R}\left(\frac{1}{2}\left(C x y^{2}-B x^{2} y\right)-\left(x \frac{\partial \psi}{\partial x}+y \frac{\partial \psi}{\partial y}\right)\right) d x d y=x_{o} P_{y}-y_{o} P_{x}
\end{gathered}
$$

where J is the torsional rigidity - final relation determines angle of twist α

Flexure Example - Circular Section with No Twist

$$
\nabla^{2} \psi=-\frac{v}{1+v} \frac{P}{I_{x}} r \cos \theta \quad \frac{1}{a} \frac{\partial \psi}{\partial \theta}=\frac{1}{2} \frac{P}{I_{x}} a^{2} \sin ^{3} \theta \text { on } r=a
$$

Solution: $\quad \psi=\frac{P}{I_{x}}\left[-\frac{3+2 v}{8(1+v)} a^{2} x-\frac{1+2 v}{8(1+v)} x y^{2}+\frac{1-2 v}{24(1+v)} x^{3}\right]$

$$
\tau_{x z}=-\frac{P}{4 I_{x}} \frac{1+2 v}{1+v} x y
$$

Stress Solution:

$$
\begin{aligned}
& \tau_{y z}=\frac{P}{I_{x}} \frac{3+2 v}{8(1+v)}\left[a^{2}-y^{2}-\frac{1-2 v}{3+2 v} x^{2}\right] \Rightarrow \tau_{\max }=\tau_{y z}(0,0)=\frac{P}{\pi a^{2}} \frac{3+2 v}{2(1+v)} \\
& \sigma_{z}=-\frac{P}{I_{x}} y(l-z) \quad \text { Strength of Materials: } \tau_{\max }=\frac{4}{3} \frac{P}{\pi a^{2}}
\end{aligned}
$$

