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Extension of Cylinders 
Assumptions 
- Load Pz is applied at centroid of cross-

section so no bending effects 
- Using Saint-Venant Principle, exact end 

tractions are replaced by statically 
equivalent uniform loading  

- Thus assume stress z is uniform over any 
cross-section throughout the solid 
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Using stress results into Hooke’s law and combining with the strain-
displacement relations gives 
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Torsion of Cylinders  
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Guided by Observations from Mechanics of Materials 
• projection of each section on x,y-plane rotates as  

rigid-body about central axis 
• amount of projected section rotation is linear 

function of axial coordinate 
• plane cross-sections will not remain plane after 

deformation thus leading to a warping displacement 
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Torsional Deformations 
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Now must show assumed displacement form  
will satisfy all elasticity field equations 

Elasticity  Theory, Applications and Numerics 

M.H. Sadd , University of Rhode Island 



Stress Function Formulation 
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Boundary Conditions 
Stress Function Formulation 
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Displacement Formulation 
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Formulation Comparison 
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Stress Function Formulation Displacement Formulation 

Relatively Simple Governing Equation 
Very Simple Boundary Condition 

Very Simple Governing Equation 
Complicated Boundary Condition 
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Multiply Connected Cross-Sections 

Boundary conditions of zero tractions on all lateral surfaces 
apply to external boundary So and all internal boundaries 
S1, . . .  Stress function will be a constant and  displacement 
be specified as per (9.3.20) or (9.3.21) on each boundary Si,    
i = 0, 1, . . .  
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where i are constants.  Value of i may be arbitrarily chosen 
only on one boundary, commonly taken as zero on So . 

Constant stress function values on each interior boundary are found by 
requiring displacements w to be single-valued, expressed by  

 
1

0),(
S

yxdw 12
1

Ads
S

 where A1 is area enclosed by S1 

Value of 1 on inner boundary S1 must therefore be chosen so that relation is satisfied.  If cross-
section has more than one hole, relation must be satisfied for each hole. 
Boundary conditions on cylinder ends will be satisfied, and resultant torque condition will give 

1122 AdxdyT
R

 

Elasticity  Theory, Applications and Numerics 

M.H. Sadd , University of Rhode Island 



Membrane Analogy 
Stress function equations are identical to those governing  static deflection of an elastic membrane 
under uniform pressure.  This creates an analogy between the two problems, and enables particular 
features from membrane problem to be used to aid solution of torsion problem.  Generally used to 
providing insight into qualitative features and to aid in developing approximate solutions.  
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Torsion Solutions Derived from  
Boundary Equation  
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If boundary is expressed by relation f(x,y) = 0, this 
suggests possible simple solution scheme of 
expressing stress function as  = K f(x,y) where K is 
arbitrary constant.  Form satisfies boundary 
condition on S, and for some simple geometric 
shapes it will also satisfy the governing equation 
with appropriate choice of K.  Unfortunately this is 
not a general solution method and works only for 
special cross-sections of simple geometry.   
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Example 9.1 Elliptical Section 
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Since governing equation and boundary condition are satisfied, we have found solution 
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Elliptical Section Results 

Loading Carrying Capacity 
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Elliptical Section Results 
3-D Warping Displacement Contours 

T 
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Example 9.2 Equilateral Triangular Section  
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For stress function try product form of each boundary line equation 
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Since governing equation and boundary condition are satisfied, we have found solution 
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Equilateral Triangular Section Results 

Loading Carrying Capacity 
Angle of Twist  
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Additional Examples That Allow Simple 
Solution Using Boundary Equation Scheme 

Section with Higher Order  
Polynomial Boundary (Example 9-3) 

Circular Shaft with Circular  
Keyway (Exercise 9-22/23) 
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Examples That Do Not Allow Simple 
Solution Using Boundary Equation Scheme 

x 

 y 

a 

b 

 

x = a 

  y = m1x 

 y = -m2x 

x 

 y 

General Triangular Section  Rectangular Section  
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Example 9.4 Rectangular Section 
Fourier Method Solution 

Previous boundary equation scheme will not create a 
stress function that satisfies the governing equation.  
Thus we must use a more fundamental solution 
technique - Fourier method.  Thus look for stress 
function solution of the standard form 

    withph  )(),( 22 xayxp 
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homogeneous solution must then satisfy  

)()(),( yYxXyxh Separation of Variables Method  








2

2

2

2

2

yx

a

yn

a

xn
Byx

n

nh
2

cosh
2

cos),(
1


 












 
 

a

bn
naB n

n
2

cosh/)1(32 332/)1(2

x 

 y 

a 

b 

a

yn

a

xn

a

bn
n

a
xa

n

n

2
cosh

2
cos

2
cosh

)1(32
)(

5,3,1 3

2/)1(

3

2
22 








 









Elasticity  Theory, Applications and Numerics 

M.H. Sadd , University of Rhode Island 



Rectangular Section Results 
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Rectangular Section Results 
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Figure 9-13 Stress Function and Displacement Contours for the Rectangular Section 

 

(Stress Function Contours) 

 

(Displacement Contours, a/b = 1.0) 

 

(Displacement Contours, a/b = 0.9) 

 
(Displacement Contours, a/b = 0.5) 

 



Torsion of Thin Rectangular Sections (a<<b) 
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Investigate results for special case of a very thin 
rectangle with a << b.  Under conditions of b/a >> 1 
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Torsion of sections composed of thin 
rectangles. Neglecting local regions where 
rectangles are joined, we can use thin 
rectangular solution over each section.  
Stress function contours shown justify these 
assumptions.  Thus load carrying torque for 
such composite section will be given by 
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Example 9.5 Hollow Elliptical Section 
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coincide with both inner and outer boundaries, 
and so no stress will act on these lateral 
surfaces.  Therefore, hollow section solution is 
found by simply removing inner core from solid 
solution.  This gives same stress function and 
stress distribution in remaining material. 
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Hollow Thin-Walled Tube Sections 
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With t<<1 implies little variation in membrane slope, and BC can be approximated 
by a straight line.  Since membrane slope equals resultant shear stress 
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Cut Thin-Walled Tube Sections  

Cut creates an open tube and produces significant changes to stress function, 
stress field and load carrying capacity.  Open tube solution can be 
approximately determined using results from thin rectangular solution.  
Stresses for open and closed tubes can be compared and for identical applied 
torques, the following relation can be established (see Exercise 9-24) 
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Torsion of Circular Shafts of Variable Diameter 
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Conical Shaft Example 9-7 
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Conical Shaft Example 9-7  = 30o 

Comparison with Mechanics of Materials 
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Numerical FEA Torsion Solutions 

(4224 Elements, 2193 Nodes) 

(4928 Elements, 2561 Nodes) 

(4624 Elements, 2430 Nodes) 

(Stress Function Contours) 

(Stress Function Contours) 

(Stress Function Contours) 
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Flexure of Cylinders 
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Consider flexure of cantilever beam of 
arbitrary section with fixed end at z = 0 
and transverse end loadings Px and Py at  
z = ℓ.  Problem is solved in Saint-Venant 
sense, so only resultant end loadings Px 
and Py will be used to formulate boundary 
conditions at z = ℓ.  
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From  general formulation                               , and motivated 
from strength of materials choose                                    , 
where B and C are constants. Stresses xz and yz  will be 
determined to satisfy equilibrium and compatibility 
relations and all boundary conditions. 
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Flexure Formulation 
Remaining Beltrami-Michell Compatibility Relations   
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Flexure Formulation 
General solution to )(
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where x, y and  xy are the area moments of inertia of section R 

where J is the torsional rigidity – final relation determines angle of twist  
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Flexure Example - Circular Section with No Twist 
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Polar Coordinate Formulation  
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