The complete system of ordinary differential equations will be as

$$
\begin{gathered}
\beta^{\prime}=\eta+\gamma H \\
d_{0}^{2}=\gamma^{2}+\beta^{2} \Rightarrow \gamma^{\prime}=-\frac{\beta \beta^{\prime}}{\gamma}=-\frac{\beta(\eta+\gamma H)}{\gamma} \\
\eta^{\prime}=\left(\beta-\beta_{0}\right) \frac{k_{\beta}}{k_{\eta}}+\frac{\beta \eta H}{\gamma} \\
\lambda^{\prime}=\frac{1}{\gamma k_{\lambda} \lambda}\left(-6 \beta \eta \gamma k_{\beta}+5 \beta_{0} \eta \gamma k_{\beta}-2 \beta \gamma^{2} H k_{\beta}+\beta_{0} \gamma^{2} H k_{\beta}-4 \beta \eta^{2} H k_{\eta}\right) \\
H=\left(2\left(3 \beta^{2} \eta \gamma^{2} k_{\beta}-3 \beta \beta_{0} \eta \gamma^{2} k_{\beta}-\eta \gamma^{4} k_{\beta}+d 0^{2} \eta^{3} k_{\eta}\right)\right) / \\
\left(\gamma \left(\beta^{2} \gamma^{2} k_{\beta}-2 \beta \beta_{0} \gamma^{2} k_{\beta}+\beta_{0}^{2} \gamma^{2} k_{\beta}+2 \gamma^{4} k_{\beta}-6 \beta^{2} \eta^{2} k_{\eta}+\eta^{2} \gamma^{2} k_{\eta}-\right.\right. \\
\left.\left.\gamma^{2} k_{\lambda}+\gamma^{2} k_{\lambda} \lambda^{2}\right)\right)
\end{gathered}
$$

1 Test case 1

1.1 Parameters

$$
\begin{aligned}
k_{\beta} & =1\left[p N / n m^{2}\right] \\
k_{\eta} & =2.856[p N] \\
k_{\lambda} & =145[p N] \\
d_{0} & =6[n m] \\
\beta_{0} & =0[\mathrm{~nm}]
\end{aligned}
$$

1.2 Boundary conditions

The domain in a straight line from 0 to $L=20$
We have $d_{0}^{2}=\gamma^{2}+\beta^{2}$, therefore at the left boundary we put, at $x=0: \beta=0, \gamma=6$
and at the right boundary
at $x=L: \gamma=3, \lambda=1$

