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1 Mathematical construction

1.1 Setting up the basic system

As a first step we thought about a basic sketch of our system. Our system will
work inside of the gut where most of the bacterias are stuck to the intestine
wall [?].We will therefore approximate the system to only the walls of a tube.
The real intestine contains a very complex microbialflora which is very complex
[?]. Because of this complexcity we decided to only concider a system with two
bacterial species, our killer, Lactobacillus, and our target, Yersinia entercolit-
ica(Yersinia). This will be a mayor flaw of our system that needs to be included
when thinking of the application of the results.

Likewise we will only concider the physics of two molecules, the sensing molecule,
3-oxo-C6-HSL(AHL), and the toxin molecule, colicin Fy-a (cfya).

1.2 The Yersinia model

The Yersinia is non-motile at 37 degrese celcius [?] and therefore the movement
will be neglected. During an infection ofYersinia it has been found that they
reach a maximum density of ?? cell/mL in the intestine [?]. Therefore the
growth term of Yersinia will also be neglected. At last the death rate of Yersinia
which will be governed by the concentration of cfya(notated as c in formulas),
where all Yersinia will die once the concentration has reached a limiting value
Kc. This will be represented by a heaviside-step-function shown in equation
(1).

∂y

∂t
= −θ(c−Kc)y (1)

However letting all bacteria die at the same time once the concentration has
been reached might not represent how it will work in-vivo. For example, a area
with a high Yersinia density will likely not die as quickly as a area with low
density. To fix this a function for controlling the rate of the killing depending
on the Yersinia density, kd(y), can be introduced. Data for the rate of this term
would thou need to be determined experimentaly by trying diffrent densities of
Yersinia exposed to a fixed concentration of cfya that is higher than Kc. The
same test could also be carried out, but with fluctuating values of cfya instead,
to determine if the death rate, kd, is dependent on the concentration of cfya.
However if the Yersinia dies of too quickly this could prove to be difficult to
determine.

Assuming the experimental values are possible and dependant on both cfya
and Yersinia density, we get equation (2), where kd is a function of the Yersinia
density and the cfya concentration, kd(y, c).

∂y

∂t
= −θ(c−Kc)kdy (2)
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1.3 The Lactobacillus model

The Lactobacillus can be both motile and non-motile in our system depending
on the AHL concentration(see project description). When bacteria are motile
they move in a random walk fashion[?]. When studying a system on population
density scale the random walk can be simplified as an diffusion of the bacteria
[?]. However this creates a problem with the system of a non-mobile and a mo-
bile phase. When the bacterias are in the non-mobile phase we want the mobile
bacteria to diffuse towards the non-motile bacteria like there was no bacteria
there at all, see figure ??.

To solve this we decided to make the system give the non-motile Lactobacil-
lus(activated Lactobacillus, notated la in formulas) it’s own density and remove
that density from the motile Lactobacillus(notated l in formulas). The trig-
ger for this change from motile to non-motile will be when the concentration of
AHL(notated a) will reach a threshold(notated Ka), this will also be formulated
via the heaviside-step-function. The change of Lactobacillus density can then
be written as in equation (3) and (4) where Dl notates the diffusion constant of
a motile Lactobacillus.

∂l

∂t
= ∇ · (−Dl∇l)− θ(a−Ka) · l + θ(Ka − a) · la (3)

∂la
∂t

= θ(a−Ka)l − θ(ka − a)la (4)

1.4 The AHL model

The change of AHL concentration over time will be dependant on diffusion, pro-
duction, consumption and degradation. Diffusion of the AHL can be modelled
the via the diffusion model [?], with a specific diffusion coefficient, Da. Produc-
tion will depend on the Yersinia density and the amount of AHL [1 cell/mL]
Yersinia can produce per timestep, βy. Degradation of AHL can is dependant
on pH [?] and on degrading cells, like mammalian epitial cells [?]. Since theese
two values can be concidered constant in the intestine the degradation will be
dependant determined by a degradation constant, ηa. The change over time
of AHL concentration, with neglected consumption, can be wirtten as equation
(5).

∂a

∂t
= ∇ · (−Da∇a) + βay − ηaa (5)

Consumption will be dependent on the amount of activated Lactobacillus that
is present. To give a fair representation of the consumption only the volume
of a shell around the Lactobacillus will be counted. The thickness of the shell
is equal to the maximum traveling distance, da, of a molecule of AHL in one
second, derived from the diffusionconstant, Da, as seen in equation (9).

Vl = R2
l π · Ll (6)

Vs,l = (Rl + da)2π · (Ll + 2 · da) (7)

Da =
d2a
2t

(8)

3



da =
√
Da · 2 (9)

One activade lactobacillus will then affect the concentration in a volume, Vf,l.

Vf,l = Vs,l − Vl (10)

Assuming that all concentration is lost when Lactobacillus have activated, the
expression for the consumption can then be written as equation (??)

consumption = −Vf,llaKa (11)

Finaly the change of concentration of AHL can be written as:

∂a

∂t
= ∇ · (−Da∇a) + βay − Vf,llaKa − ηaa (12)

MOVE TO CONSTANTS. Degradation of AHL is dependent on it’s enviroment.
In the instine the pH is close to 7.4 [] and the AHL is surrounded by bacteria
and mammalian cellwall cells. In an alkaline enviroment AHL is degraded by
pH-dependant lactonolysis [].

1.5 The colicin fya model

Cfya will resemble the equation of AHL by most parts. The diffusion, degra-
dation and consumption can all be concidered to be formed the same way but
with new indicies. Where Dc is the diffusion coefficient, ηc is the degradation
and γc is the consumption. The production will also be simmular with a pro-
duction term, βc, but will be dependant on the activated Lactobacillus density,
la, instead of the Yersinia density.

∂c

∂t
= ∇ · (−Dc∇c) + βcla − Vf,yyKc − ηcc (13)

1.6 Complete system

The complete system of PDE:s can now be written as:

∂y

∂t
= −θ(c−Kc)y (14)

∂l

∂t
= ∇ · (−Dl∇l)− θ(a−Ka) · l + θ(Ka − a) · la (15)

∂la
∂t

= θ(a−Ka)l − θ(Ka − a)la (16)

∂a

∂t
= ∇ · (−Da∇a) + βay − Vf,llaKa − ηaa (17)

∂c

∂t
= ∇ · (−Dc∇c) + βcla − Vf,yyKc − ηcc (18)

Initial values will also need to be formed. At the start we will concider n colonies,
with their midpoint at xn and yn and radius ry, of Yersinia spread out in the
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intestine. The density in the colonies will be notated as y0,c as seen in equation
(19). At these colonies there will be a steady-state value of AHL concentration,
a0,c.

y0 =

{
(x− xn)2 + (y − yn)2 <= r2y y0,c

otherwise 0
(19)

a0 =

{
(x− xn)2 + (y − yn)2 <= r2y a0,c

otherwise 0
(20)

As for Lactobacillus we will concider all of the Lactobacillus to arrive at the
intestine wall at the time zero, evenly distributed with density, l0. The density
of activated Lactobacillus can be set to zero since we assume that no AHL was
present outside the intestine wall, and therefore the cfya concentration will also
be set to zero.

All the molecules and bacteria will be able to flow freely out of the ends of the
intestine and therefore the boundaries at the x-limits, 0 and xmax. Assuming
that the concentration of AHL, cfya, Lactobacillus and Yersinia is neglectable
outside the small intestine, boundary condition, equations (21 - 25), can be
written with dirchlet-type.

y(0, y, t) = y(xmax, y, t) = 0 (21)

l(0, y, t) = l(xmax, y, t) = 0 (22)

la(0, y, t) = la(xmax, y, t) = 0 (23)

a(0, y, t) = a(xmax, y, t) = 0 (24)

c(0, y, t) = c(xmax, y, t) = 0 (25)

As for y-axis boundaries they should be a connection between eachother, since
we have cut the intestine, a tube, along the borders. That can be represented
with Newman boundary conditions as seen in equations (??-??).

1.7 Constants value

Variable Description Value ref
Dl Diffusionconstant for lactobacillus when motile[mm2/s] 3 ∗ 10−4

Dc Diffusionconstant for colicin molecules[mm2/s] 4.2 ∗ 10−5 [?]
Da Diffusionconstant for AHL molecules[mm2/s] 4.9 ∗ 10−6

Kc Concentration of colicin needed Yersina death [titre] 1:4096
Ka Concentration of AHL molecule to activate lactobacillus exp.
βc Ratio of colicin produced per lactobacillus[moles/cell*s] (937.5 un./min).
βa Ratio of AHL produced per yersinia[moles/cell*s] exp.
ηc Degradationconstant for colicin exp.
ηa Degradationconstant for AHL[1/h] 1.04
Vf,y Volume of impact, Yersinia
Vf,l Volume of impact, Lactobacillus
y0,c Initial density Yersinia colony
a0,c Initial concentration AHL at Yersinia colony
l0 Initial density Lactobacillus
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2 MATLAB modeling

2.1 Trival test of system

To test our system we constructed a couple of testruns in which a simple input
leads to a trival output. A summury can be seen in tabel ??.

Tested function Simplification Figure
Yersinia basic behavior No AHL and Lactobacillus ??
Diffusion of AHL No Yersinia and Lactobacillus ??
Lac
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