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Abstract
In this paper, a new way of actively tuning the resonant frequency of
vibrating microelectromechanical devices by electrostatically adjusting the
length of the resonating structure is explored. Variations in micromachining
processes cause submicron differences in the size of fabricated
micromachined devices, which lead to frequency variations in resonators.
For radio frequency (RF) applications where high frequency selectivity and
low noise frequency manipulation are key performance issues,
micromachined resonators need to output a fixed frequency if they are to
replace current off-chip, passive devices. This motivates the investigation of
post-fabrication techniques that compensate for fabrication defects and
errors, and shift the resonant frequency to its designed value. A simple
universal analytical model has been developed to investigate the different
states a cantilever undergoes during pull-in due to an applied voltage. The
beam’s natural frequencies throughout these states have been plotted. It is
shown that the frequency can be changed by a factor of 4 during pull down,
and thereafter increased proportionally with actuation provided an initial
minimum voltage was applied.

1. Introduction

Resonant devices fabricated using high aspect-ratio
lithographic and other precision micromachining techniques
are used as mechanical sensors for detecting physical and
environmental parameters [1, 2]. Additionally, high-Q
micromechanical resonators are replacing bulky, off-chip,
passive devices in radio frequency (RF) filters, mixers and
oscillators used in super-heterodyne wireless transceivers
[3–5].

In each of these applications however, there is a need for
post fabrication modifications to increase yield, and produce
devices to design specifications. This tuning is done to
compensate for local process variations, as well as errors and

defects occurring during fabrication, which result in a shift
or distribution of the resonance frequency. Post fabrication
modifications also compensate for environmental factors like
ageing [6], contamination [7] and thermal mismatch that could
affect the device during its lifetime.

Previous frequency tuning methods relied on changing
either the stiffness, or the mass of the resonating device.
One way of doing this was by dimensionally trimming the
resonator structure using laser [8, 9], reactive ion etching (RIE)
and ion milling [10], or focused ion beam micromachining
[11]. The other was by selectively depositing polysilicon
on well-demarcated regions of the vibrating structure. This
was done using laser writing [12], epitaxial growth [13]
and by decomposing silane on electrically heated released
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structures [14, 15]. Inducing stresses in the device also
changes its effective stiffness, and therefore the resonating
frequency. This was done electrostatically using in-built
capacitive actuators [16–18], and electrothermally by passing
a current to generate tensile and compressive thermal stresses
[19–21].

The active tuning method demonstrated in this paper
achieves very large frequency shifts from small changes
in the length of the vibrating structure using an actuation
voltage. The vibrating structure in this method is a cantilever
that is transformed into a clamped–clamped beam after pull
down. The large frequency change with length during
actuation, over a wide band of frequencies, compares highly
to reported figures. These include frequency shifts of 1.9%
at around 86.6 kHz using selective deposition [14, 15], 5% at
around 650 Hz using focused ion beam micromachining [11]
and 6.5% at 31 kHz using electro-thermal stiffness change
[19]. Additionally, this method guarantees frequency tuning
throughout the lifetime of the device, and overcomes several
drawbacks imposed by previous methods. These include
high processing temperatures, permanent deformation of the
device, large costs of laser equipment required to achieve high
precision on nano-scale structures, parasitic capacitances of
in-built actuators and non-linear effects like levitation [16]
and stiffness hardening [17].

This paper focuses on a novel tuning method that uses
actuation voltages to alter the free length of a cantilever beam,
and therefore its frequency. In section 2, the theoretical
background to the pull-in phenomena is briefly explained.
Section 3 then discusses the different states that a cantilever
undergoes during electrostatic actuation together with plots
of the frequency response of the beam with increasing and
decreasing voltages. Section 4 gives a discussion on the
different states, and their implications to frequency tuning.
Stiction resulting from van der Waals and other surface
adhesion effects after contact has been extensively analysed
[22–26]. This can be reduced during device fabrication
by using anti-stiction coatings [27], increasing the surface
roughness [28], and by designing dimples in the cantilever
and spacer posts or sidewalls on the landing bottom layer
[29, 30]. In this analysis, the work done by stiction
forces is assumed small as compared to the necessary elastic
deformation energy of the cantilever. Also, fringing effects
are neglected throughout the analysis.

2. Theory

In elastic systems which are strained as the result of
electrostatic actuation [31–33], pull-in arises as the final
consequence of the build up of electrostatic forces, due to
the increased proximity of neighbouring charges opposing
the resorting action of elastic forces. To understand how
this phenomenon can be exploited to achieve the frequency
control of a cantilever beam, consider the situation shown in
figure 1. Here a cantilever of density ρ, Young’s modulus
E, original length L0, width b and thickness d is initially
separated from an electrode by an electrostatic gap H with free
space permittivity ε0. To avoid a short circuit on pull down,
a landing insulating layer of thickness h and permittivity ε1 is
placed on the electrode.

Y

X

V

L Contact

U(x)

Lo0 X

hInsulator

Electrode

Substrate

H

Figure 1. System configuration and states. State 1 is represented by
(· · · · · ·), state 2 by (- - - -) and state 3 by (— · —).

When an external voltage V is applied across the cantilever
and the electrode, an attracting electrostatic force is produced.
Initially, it pulls the cantilever into a deflection profile u(x),
as shown by state 1. In this state the natural frequency of
free vibration will be determined by the characteristics of the
cantilevered form. At a critical value of V this form becomes
statically unstable, and it is postulated that the beam thereafter
moves to a different equilibrium state, identified as state 2 in
figure 1. For state 2, the end of the beam contacts the surface of
the insulation, and maintains an end displacement of H. Here,
the natural frequency will be determined by the characteristics
of a clamped–pinned beam of length, L0. When the voltage is
increased further it is supposed that the end region of the beam
rotates towards the insulation until a second critical value is
reached. Thereafter the end portion of the beam conforms
with the surface of the insulation, and the free length of the
beam is reduced to L in state 3. The natural frequency is
now determined by the characteristics of a clamped–clamped
beam.

A static and dynamic analysis of these states will now be
carried out for increasing and decreasing values of voltage.
The critical voltages, and the manner in which the first natural
frequency of the beam varies with applied voltage, will be
determined.

3. Analysis of states 1–3

3.1. State 1

The equations which determine the dynamic behaviour of
the cantilever before pull-in occurs can be derived from
Hamilton’s principle [34, 35] by setting the Lagrangian La,
as

La = T − Vb + Vc (1)

where the kinetic energy T and the strain energy of the
cantilever Vb are

T = ρbdL0H
2

2p1
2

∫ 1

0

(
∂u

∂τ

)2

dµ; (2)
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Vb = Ebd3H 2

24L0
3

∫ 1

0

(
∂2u

∂µ2

)2

dµ; (3)

and the electrical energy stored by the capacitor formed by the
beam and the electrode, Vc, is

Vc = ε0V
2bL0

2H

∫ 1

0

(
1

1 + h/H − u

)
dµ. (4)

Here, the non-dimensional beam displacement u and space
variable µ are defined as u = U/H and µ = x/L0,
respectively. The non-dimensional time is given by τ = p1t ,
where p1 is the first natural frequency of the non-actuated
cantilever. Minimization of the Lagrangian with respect to
the displacement u gives the motion of the cantilever and the
boundary conditions as

∂4u

∂µ4
− 6�2

(1 + h/H − u)2
+ λ4 ∂2u

∂τ 2
= 0, (5)

u|µ=0 = ∂u

∂µ

∣∣∣∣
µ=0

= 0, (6)

∂2u

∂µ2

∣∣∣∣
µ=1

= ∂3u

∂µ3

∣∣∣∣
µ=1

= 0, (7)

where

�2 = ε0V
2L0

4

Ed3H 3
, (8)

and

λ4 = 12p1
2ρL0

4

Ed2
. (9)

The solution of equations (5), (6) and (7) now proceeds
in two stages. In the first stage ∂/∂τ = 0, and the static
solution u = u0(µ) is determined by numerical integration
of (5) using a MATLAB routine [36, 37]. For the second
stage, (5) is linearized by setting u = u0(µ) + ν(µ, τ), where
ν(µ, τ) is assumed to be a perturbation of the cantilever’s
displacement about the static state u = u0(µ). The equations
which determine ν(µ, τ) are

∂4ν

∂µ4
−

[
12�2

(1 + h/H − u0(µ))3

]
ν + λ4 ∂2ν

∂τ 2
= 0; (10)

ν|µ=0 = ∂ν

∂µ

∣∣∣∣
µ=0

= 0; (11)

and
∂2ν

∂µ2

∣∣∣∣
µ=1

= ∂3ν

∂µ3

∣∣∣∣
µ=1

= 0. (12)

The natural frequencies, and thus the pull-in stability of the
system will be determined by the eigenvalues of (10). To
determine the natural frequencies of the cantilever, a solution
of the form

ν(µ, τ) =
[

N∑
k=1

αkφk(µ)

]
sin(rτ ) (13)

is sought, where αk and r are the factors to be determined.
The functions φk(µ) are the mode shapes of the non-actuated
cantilever [38], given by

φk(µ) = [cosh(βkµ) − cos(βkµ)]

−
[

sinh(βk) − sin(βk)

cosh(βk) − cos(βk)

]
[sinh(βkµ) − sin(βkµ)], (14)
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Figure 2. Variation of normalized frequency with the normalized
actuation voltage from the unactuated point A to the critical point B
where � = �c1 ≈ 0.7407 for the case when h/H = 0.25.

and satisfy the boundary conditions (11) and (12), as well as
the orthogonal conditions (15) and (16):∫ 1

0
φiφj dµ = δij ; (15)

∫ 1

0

∂2φi

∂µ2

∂2φj

∂µ2
dµ = βi

4δij . (16)

Here βk are the roots of the frequency equation [38]

cosh(βk) cos(βk) + 1 = 0. (17)

When (13) is substituted into (10), and Galerkin’s procedure
[39, 40] applied, a standard eigenvalue problem,

N∑
k=1

[(
βi

4 − r2λ4
)
δij − �ij

]
αj = 0, (18)

is formed where

�ij = 12�2
∫ 1

0

φi(µ)φj (µ)

(1 + h/H − u0(µ))3
dµ. (19)

The solution of (18) yields r and αk , and hence the natural
frequencies and mode shapes of the actuated cantilever. For
the stability of the deflected shape u0(µ), all the eigenvalues r
must be real, and the condition for the pull-in to just occur is
r = 0. If a single mode expansion for ν(µ, τ) is assumed i.e.
N = 1 in (13), and λ = β1, the first natural frequency and the
pull-in condition are given by

r2 = βk
4 − �ij

λ4
= 1 − �ij

β4
k

, (20)

and

�c1
2 = βi

4

[
12

∫ 1

0

φi(µ)φj (µ)

[1 + h/H − u0(µ)]3
dµ

]−1

. (21)

Using (20), together with the computed values of u0(µ), r

is plotted as a function of the actuation number � as shown in
figure 2, for the case of h/H = 0.25. As � (proportional to the
voltage V ) is increased, the frequency number r monotonically
decreases along the curve A → B until at the critical value
B,�c1 ≈ 0.7407, it becomes zero.
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Figure 3. Normalized frequency variation with both increasing
(A → B → C → D), and decreasing normalized actuation voltage
(D → E → F → A) for the states 1 (- - - -) and 2 (· · · · · · and
——). The critical values for the case when h/H = 0.25 are �c1 at
B,�c2 at D and �c3 at E.

3.2. State 2

When � > �c1, state 1 is unstable, and it is assumed that the
beam moves to state 2 as shown in figure 1. Here, the end
of the beam makes contact with the insulation. The equation
which determines the behaviour of the beam is the same as (5)
but the boundary conditions change, and are now given by

u|µ=0 = ∂u

∂µ

∣∣∣∣
µ=0

= 0; (22)

u|µ=1 = 1; ∂2u

∂µ2

∣∣∣∣
µ=1

= 0. (23)

There is also the further condition that contact (shear) force
acting on the beam at the end µ = 1 must be directed along the
surface normal at the point of contact. This condition requires
∂3u/∂µ3 > 0. The solution to (5), (22) and (23) uses the
same procedure as described in state 1 but with the functions
φk(µ), in (13), replaced by the mode shape functions of a
clamped–pinned beam,

φk(µ) = cosh(βkµ) − cos(βkµ)

− cot(βk)[sinh(βkµ) − sin(βkµ)] (24)

where βk is now the solution to

tan(βk) − tanh(βk) = 0. (25)

Calculation of the frequency number, r, for values of
� > �c1 shows (figure 3, for the case of h/H = 0.25) that r
‘jumps’ from r = 0 at B to the value r = 4.1997 at C, and
thereafter decreases to zero again at D, when � = �c2 =
1.4258. If it is now assumed that r is at C, and instead of
increasing the value of �, it is reduced, then it is noted that
the condition remains satisfied until � is reduced to the third
critical value � = �c3 = 0.5408. At this point the condition
∂3u/∂µ3 > 0 becomes violated, and it is implied that contact
at the tip of the beam is lost. The beam thus returns to state 1, r
‘jumps’ from E to F, and thereafter follows the curve F → A.

3.3. State 3

Suppose � is increased from zero, and reaches values � > �c2.
For these values it is assumed that the cantilever takes up the
static shape shown by state 3 in figure 1. Here the end portion
of the cantilever becomes attached to the insulation, and the
free region is of unknown span η = L/L0 � 1. To analyse
this situation it is necessary to reformulate the Lagrangian, and
for this case the energy terms are

T = ρbdL0H
2

2p1
2

∫ η

0

(
∂u

∂τ

)2

dµ, (26)

Vb = Ebd3H 2

24L0
3

∫ η

0

(
∂2u0

∂µ2

)2

dµ, (27)

and

Vc = ε0V
2bL0

2H

∫ η

0

(
1

1 + h/H − u

)
dµ +

ε0V
2bL0

2h
(1 − η).

(28)

The variation of the Lagrangian La = T − Vb + Vc, which is
now calculated with respect to the variations δu and δτ , can
be written as

δLa =
∫ η

0

[
−ρbdL0p1

2 ∂2u

∂τ 2
− Ebd3H 2

12L0
3

∂4u0

∂µ4

+
ε0V

2bL0

2H(1 + h/H − u)2

]
δu dµ

+
Ebd3H 2

24L0
3

(
∂2u

∂µ2

)2 ∣∣∣∣
µ=η

δη. (29)

Here it has been assumed that the variations of u and ∂u/∂τ at
the end points (0, η) are zero, and that the following boundary
conditions are satisfied:

u|µ=(0,η) = ∂u

∂µ

∣∣∣∣
µ=(0,η)

= 0. (30)

The requirement δLa = 0 thus gives

∂4u

∂µ4
− 6�2

(1 + h/H − u)2
+ λ4 ∂2u

∂τ 2
= 0, (31)

and

∂2u

∂µ2

∣∣∣∣
µ=η

= 0. (32)

It will be noted that (32) is an additional requirement,
and provides the condition which determines the value of the
contact position, η. In their present form, equations (30), (31)
and (32) are difficult to solve as condition (32) is not easily
accommodated into the method used in state 1. To overcome
this, (31) is transformed into an integral by making use of the
relationship∫ µ

0
. . . n times . . .

∫ µ

0
F(σ) dσ

=
∫ µ

0

(µ − σ)(n−1)

(n − 1)!
F(σ) dσ +

n−1∑
j=0

Aj

j !
µj , (33)

where Aj are arbitrary constants. For this case n = 4, so

F(µ) = ∂4u

∂µ4
= 6�2

(1 + h/H − u)2
− λ4 ∂2ν

∂τ 2
, (34)

1036



Frequency adjustment of microelectromechanical cantilevers

and the constants A0 . . . A3 are found by applying the boundary
conditions in (30). By following this procedure, it follows that
condition (31) can be written in the integral form∫ η

0

[
σ 2(η − σ)

6

(
6�2

(1 + h/H − u)2
− λ4 ∂2u

∂τ 2

)]
dσ = 1.

(35)

A solution is now sought by following the linearization
procedure outlined in (5), (6) and (7) by rewriting the
displacement as u = u0 + ν, and the free length η = η0 + γ .
Here (u0, η0) represents the static state of the beam, whereas
(ν, γ ) represents the small dynamic perturbations. If the
Taylor expansion f (η) = f (η0) + γ ∂f/∂µ|µ=η0 + · · · is used
then equations (30), (31) and (35) can be re-written to a first
order in ν and γ . For the static solution:

∂4u0

∂ξ 4
− 6K2

(1 + h/H − u0(µ))2
= 0; (36)

u0|ξ=(0,1) = ∂u0

∂ξ

∣∣∣∣
ξ=(0,1)

= 0; (37)

where

K2 = �2η0 =
[∫ 1

0

σ 2(1 − σ)

(1 + h/H − u0)3
dσ

]−1

. (38)

For the dynamic solution,

∂4ν

∂ξ 4
− 12K2

[1 + h/H − u0(µ)]3
ν + λ4η0

4 ∂2ν

∂τ 2
= 0; (39)

ν|ξ=(0,1) = ∂ν

∂ξ

∣∣∣∣
ξ=(0,1)

= 0; (40)

and

γ = η0

∫ 1

0
σ 2(1 − σ)

[
λ4 ∂2ν

∂τ 2
− 12�2ν

(1 + h/H − u0(µ))3

]
dσ

×
(∫ 1

0

12�2σ 2

(1 + h/H − u0(µ))2
dσ

)−1

. (41)

In the above equations, the space variable µ has been
rescaled according to µ = η0ξ . This has the advantage of
redefining integrals (38) and (41) over the fixed range, (0,1).
To solve for u0 and η0, the following iterative procedure was
used. An initial trial function u0

(0)(ξ) was proposed, and an
estimate for K,K(0), found from (38). This estimate was
then substituted into (36), and solved numerically to satisfy
(37). The resulting solution thus provided an updated trial
function u

(1)
0 , and the foregoing procedure was repeated until

convergence occurred. A flow diagram of the iteration scheme
is shown in figure 4. It is assumed here that convergence
will occur, and by satisfying (32) using (35) and (36), the
iteration provides a method which is more tolerant of the initial
form chosen for u0(ξ). To illustrate the effectiveness of this
procedure two trial functions were examined: (i) u

(0)
0 = ξ , and

(ii) u
(0)
0 = [1 − cos(πξ)]/2. Both trial functions converged

to the same deflection profile as shown in figure 5, and gave
K = 1.3917 when h/H = 0.25.

The MATLAB boundary-value numerical routine used for
this solution [36, 37] produces ∂2u0/∂ξ 2 as an output, and for
the fully iterated case, its value at ξ = 1 was shown to satisfy
(32), as shown in figure 6.

Figure 4. Iterative coupled electrostatic solution analysis
methodology.
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Figure 5. Comparing the final deflection for both initial trial
functions. The trial function (i) u

(0)

0 = ξ is represented by (· · · · · ·),
the trial function (ii) u

(0)

0 = [1 − cos(πξ)]/2 by (- - - -) and the
convergent solution by (——).

The free span of the beam can now be calculated from
(35), and is given by the simple expression η0 ≈ √

K/�. For
the special case where h/H = 0.25, � > �c2 = 1.4258 and
η0 = 0.988. This shows that the free length of the beam is
reduced. Once u0 has been determined, equations (39), (40)
and (41) can be solved using Galerkin’s procedure [39, 40], by
assuming the form given by (13). For this case the function
φk(µ) is given by the mode shape functions of a clamped–
clamped beam

φk(µ) = cosh(βkµ) − cos(βkµ)

−
[

cosh(βk) − cos(βk)

sinh(βk) − sin(βk)

]
[sinh(βkµ) − sin(βkµ)] , (42)

where βk satisfies

cosh(βk) cos(βk) = 1. (43)
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Figure 6. Verifying the beam curvature at the last contact point with
the substrate defined when ξ = 1.
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Figure 7. Normalized frequency variation with both increasing
(A → B → C → D → G → Z), and decreasing normalized
actuation voltage (Z → I → J → E → F → A) for the states 1
(- - - -), 2 (· · · · · · and ——) and 3 (——). The critical values for
the case when h/H = 0.25 are �c1 at B, �c2 at D,�c3 at E and
�c4 at I.

If the simple single mode expansion of ν(µ, τ) is used, the
frequency number is found from (18) and can be written as

r2 ≈ �2

λ4

[
β4

i

K2
− 12

∫ 1

0

φi(µ)φj (µ)

[1 + h/H − u0(µ)]3 dµ

]2

. (44)

Equation (44) shows that the frequency number increases
proportionally with �, as represented in figure 7 by the line
G → Z. When � is reduced from its value at Z, r at first
follows Z → G but after G, it continues in a proportional
manner until point I is reached when �c4 = K = 1.3917 for
the case of h/H = 0.25. For this value of �, η0 = 1 and
the beam adopts the clamped–pinned configuration. Further
reduction in the values of � causes r to follow the path
I → J → E → F → A.

4. Discussion

4.1. Increasing voltage

Before any voltage is applied, the normalized fundamental
frequency number of the cantilever is defined by point A, and is
r = 1. An increase in voltage produces a proportional increase
in the actuation number �, and the cantilever is attracted
towards the insulating layer. The electrostatic actuation causes
the cantilever to suffer a loss of stiffness, and the frequency
number is lowered from A to zero at B, when � = �c1. For
values of � > �c1, pull-in occurs and the cantilever adopts the
state corresponding to a clamped–pinned beam. Immediately
after pull-in the frequency number undergoes a step change,
and takes a value defined by point C. Further increases in
� cause r to adopt values along the curve C → D, and
become zero at � = �c2. Further actuation renders the
cantilever–pinned state of the beam unstable, and the beam
takes up a clamped–clamped configuration, with the end region
conforming to the surface of the insulating layer. In this state
the frequency number undergoes a step change from D → G,
and the free length is reduced. Thereafter, increased values of
�, say to Z, produce a proportional increase in r.

4.2. Decreasing voltage

When the voltage is reduced from its value at Z, the frequency
number retraces its path to point G. A further reduction in
� does not cause the beam to move to the cantilever–pinned
state as the condition η0 < 1 remains valid until point I is
reached at � = �c4. Here the clamped–clamped state becomes
unstable, the beam moves to the stable clamped–pinned state
and the frequency is lowered to point J . Decreasing the voltage
further increases the frequency number beyond point C to E,
where � = �c3, and the beam tip detaches from the insulating
layer. At this point the beam becomes a cantilever, and the
frequency number decreases abruptly to point F. Thereafter
further decreases in the voltage cause an increase in the
frequency number. When point A is reached the beam is
restored to its original unloaded state.

4.3. Frequency tuning

For the purposes of tuning the frequency of the beam it is useful
that changes in applied voltage produce a proportional change
in frequency. It is therefore desirable to operate only over
the I ↔ G ↔ Z portion of the r versus � characteristic. The
initial actuation must therefore be large enough to bring the
state of the beam to point G, and thereafter must not exceed
the breakdown voltage of the insulating layer. Although the
frequency of the beam is independent of the original length of
the cantilever between points I and Z, the original length is an
important factor as it will determine the minimum value of the
voltage and the frequency range of the system.

5. Conclusion

A universal analytical model has been developed to investigate
the behaviour of an actuated cantilever before and after pull-in
instability. Four critical voltages are derived, and it is shown
that these determine the three stable states of the beam. It is
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shown that a minimum voltage must be applied to the beam
before proportional changes in frequency can be achieved.
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