$$
\begin{gather*}
\nabla \times H=J+\frac{d D}{d t} \tag{eq.1}\\
J=\sigma E+J_{e} \tag{eq.2}\\
D=\varepsilon E \tag{eq.3}\\
E=-\nabla V-\frac{\partial A}{\partial t}=-\nabla V-j \omega A \tag{eq.4}\\
B=\mu H \tag{eq.5}\\
B=\nabla \times A \tag{eq.6}
\end{gather*}
$$

$e q .2 \rightarrow e q .1$

$$
\begin{equation*}
\nabla \times H=\sigma E+J_{e}+\frac{d D}{d t} \tag{eq.7}
\end{equation*}
$$

eq. $5 \rightarrow e q .10$

$$
\begin{equation*}
(\sigma+j \omega \varepsilon) \nabla V+\left(\sigma j \omega-\omega^{2} \varepsilon\right) \mathrm{A}+\nabla \times\left(\mu^{-1} B\right)=J_{e} \tag{eq.11}
\end{equation*}
$$

