
Power Electronics Technology    October 2003 www.powerelectronics.com14

The well-known problem of defining the
minimum inductance value for a target
roll-off and dc current is addressed in the
frame of a hysteresis model.

By MMMMMa u ra u ra u ra u ra u ricio Eicio Eicio Eicio Eicio Esguersguersguersguersguerrrrrraaaaa, Ferrite Division, EPCOS AG, Munich, Germany

T
he widespread use of gapped ferrite cores for
inductive components subject to a superposed
dc current poses a challenge to the way the
required properties are specified. The impor-
tance of attaining a precise definition of tar-

get values is driven by the need of miniaturization, on one
hand, and the slow progress of material performance, on
the other. This is because incrementing key material prop-
erties requires advancement in both material composition
and processing in to push the limits.

The conventional way to formulate a dc-bias specifica-
tion for a gapped core based on measurements shown in
Fig. 1.

1) A target roll-off in the range of 10% to 30% is linked
to a dc flux density as estimated from the dc current and the
gapping factor b, defined by the reciprocal difference be-
tween the effective and the initial permeabilities: (Eq. 1, 2)
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N stands for the number of turns, I for the current, le
for the effective magnetic length of the core and g for the
air gap. Note that the validity of Equation 1 improves with
increasing air gaps.

2) It is then verified if the resulting value is distant
enough, e.g. 20%, from the material saturation figure as
judged by empirical data. The roll-off referred to the lower
tolerance limit of the inductance minus a safety margin is
then assigned to this current.

The above described semi-quantitative procedure can
be improved by taking into account the material behavior
under dc-bias. To this end, a model of the nonlinear mag-
netic response describing the permeability roll-off as a
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function of flux density is needed. One possibility is the
classical model by Gans [1], which describes a universal
function that depends on initial permeability and satura-
tion. However, only a certain type of materials follows the
Gans curve because features such as the squareness of the
hysteresis loop (which is reflected in the inductance vs.
current curve) are missing. Therefore, a closer representa-
tion has to start from hysteresis modeling.

Hysteresis Model and Reversible Permeability
The model proposed by the author [2] consists of solv-

ing the Hodgdon [3] hysteresis differential equation in the
formulation H(B) with the major loop, as a particular solu-
tion. For the branches of the major loop a heuristic descrip-
tion has been found, which fits the lower H

L
(B) and upper

H
U
(B) branches for soft magnetic materials: (Eq. 3a, 3b)
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The fit parameters are besides the saturation B
S
, coer-

cive field H
c
 and permeability at the coercive field µ

c
, the

two squareness exponents a and b.  The reversible perme-
ability can be derived from the equations for asymmetric
minor loops in the limit 0ˆ →B  and for a ~ b, valid for
most power ferrites as follows: (Eq. 4)
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To compare the model with measured curves, a rela-
tionship between the non-directly measurable dc flux den-

sity B
dc

 and the ap-
plied dc field H

dc 
is

necessary: (Eq. 5)
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These equations
yield curves in ex-
cellent agreement
with measured val-
ues for a variety of
soft ferrite materi-
als [4].

Roll-off at
Saturation

With the help of
Equation 4, the
permeability vs. dc
field for cores with
air gap can be cal-
culated. For the in-
ductance, the effec-
tive reversible per-
meability follows
from Equations 2
and 4: (Eq. 6)
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and for the effective dc field: (Eq. 7)
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The above equations can then be applied to answer the
following question: If the shearing line described by Equa-
tion 1 is prolonged to cross the saturation curve, which roll-
off corresponds to the resulting value for the effective field
(dubbed H

s
 for “saturation field,” Fig. 2)? The result depicted

in Fig. 3 clearly shows that for sufficient large gaps, such that
roughly [4] (Eq. 8)
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the roll-off is 50%. This can be proofed both theoreti-
cally [4] and by measurements on a gapped toroids (Fig. 4:
R9.5 in material T38, µi=10000, µe=270) for which the dc
current has been rescaled by a factor (Eq. 9)
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following Equation 2 and 7, yielding values in Tesla. The
saturation value can then be read at the 50% saturation
yielding 410 mT in excellent agreement with the directly
measured value. Of course, values higher than the satura-
tion do not have any physical meaning.
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FFFFFigigigigig..... 1. 1. 1. 1. 1.     Conventional definition of a dc-bias specification: the setting
current I

set
 is defined with an empirical distance from the current

corresponding to the material saturation I
s 
according to Eq. 1. The

specified inductance limit L
min

 corresponds to the roll-off for the lower
tolerance with a safety margin.
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FFFFFigigigigig.....  2.  2.  2.  2.  2.  The saturation field strength H
s
,

defined in the upper graph as the cross point
of the shearing line (black) and the material
saturation, is shown in the lower graph to
correspond to a roll-off value to be determined.
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When applying the above proce-
dure to core shapes other than rings,
a distribution of cross-sectional areas
has to be taken into account. This
means that the corresponding flux
density distribution of the core has to
be calculated section by section. This
is shown for a highly inhomogeneous
shape, such as EP13 in Fig. 5, along
with a rescaling of the current by the

���� ��� ��� ���
�

���

� �

�������

��� ����� ���

���

���

���

���

���

��

���

���

���

���!��!"����#����$����%����

� �
��
� �

�$
�

FFFFFigigigigig..... 4. 4. 4. 4. 4.      Permeability vs. dc-bias measurement for gapped R9.5 cores in the highperm
material T38 at T=21°C (upper graph). The rescaling of the current axis (Eq.  8) yields a
material saturation value at the 50% roll-off of 410 mT.
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FFFFFigigigigig..... 3. 3. 3. 3. 3.     Calculated roll-off value for the
saturation field H

s
 as a function of initial

permeability for given effective permeability
values µ

e
= 200 and 50.

minimum cross-sectional area, which
represents the bottleneck in terms of
saturation. (Eq. 10)
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Remarkably, the corrected EP13
curves and the ring core coincide ex-
actly at the –50% roll-off, yielding the
same material saturation figure.

Distance to Saturation
The results presented so far show

that the dc bias can be precisely de-
fined relative to the saturation point.
With Equations 4 and 6, curves for the
roll-off vs. the relative distance to
saturation have been calculated for
typical material parameters at differ-
ent temperatures, as shown in Fig. 6.
With the help of these curves, the
choice of roll-off can be converted via
the relative distance into a corre-
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the selection of A
L
–value and of the

number of turns is a degree of free-

FFFFFigigigigig.....  6.  6.  6.  6.  6.          Distance to saturation for N87 material
as a function of roll-off (for an RM8 with
µ

e
=75.6, see example) and as a function of µ

e

for a roll-off of 20% at T= 25°C and T=100°C.
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sponding current, based on the
knowledge of  material and core
parameters.

A
L
-Tolerances
When considering the effect of A

L
-

tolerances, it is important to first note
that based on a statistical tolerance
simulation analysis, the tolerance is
proportional to the A

L
-value itself:

(Eq. 11)
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= ±( )1

(Eq. 12)
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The constant involves the standard
deviation for the permeability �

µi
 and

the air gap �
g
,
 
a factor sym for sym-

metric (=1) or asymmetric (=2)
grinding as well as the target �Cpk-
value. The above equation gives a gen-
erally valid relationship to be consid-
ered for designs. However, concrete
values will change from vendor to
vendor, even though an IEC-standard
for A

L
–values and its tolerances is in

preparation.

Dc-bias Specification
Since the target of an application

is to have a certain inductance:
(Eq. 13)
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FFFFFigigigigig.....  5.  5.  5.  5.  5.      A
L
-value vs. dc-bias measurement for

gapped EP13 cores in the highsat material
N45 at T=25°C with A

L
=100 nH.
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FFFFFigigigigig..... 7. 7. 7. 7. 7.          Specification example for an RM8 core in N87 with A
L
=160 nH

+/-3% at T=25°C. The red area corresponds to the set current and limit
inductance as per the proposed procedure while the black corresponds
to a conventional specification.

dom. In the frame of the present discussion, the upper tol-
erance limits the maximum attainable dc current and needs
to be kept as small as possible. Therefore, the following
specification procedure is recommended (Fig. 7):

1) The target roll-off RO with respect to the nominal
inductance is defined as the lower inductance limit:
(Eq. 14)

L L ROnommin = −( )1

2) The current corresponding to the target roll-off re-

ferred to the upper tolerance (of µ
e
) is the setting param-

eter: (Eq. 15)
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The above procedure provides a valid specification for
all possible A

L
–values within the limits, provided the toler-

ance range is smaller than the roll-off: (Eq. 16)

2 Tol RO<
Otherwise, the inductance vs. dc-current curve corre-

sponding to the lower A
L
-tolerance limit would lie outside

the minimum inductance value defined by Equation 13.

Temperature Effects
The material parameters of ferrite materials are known

to be strong temperature-dependent. To adapt the above
results from a given temperature, i.e. 25°C, the following
parameters need to be corrected in their temperature de-
pendence:

B
s
: Look up value in material data sheet; the slope of the

temperature curve is in the range of –0.8 ... –1.5 mT/°C for
power grades and –1.6...-2.3 mT/°C for highperm grades

µ
e
: Since the air gap and hence � remain constant

throughout the temperature, the value at a different
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Core: RM8
A

e
=64 mm², l

e
=38 mm, A

min
=55 mm²

Material:  N87
µ

i
(25°C)=2200, µ

i
(100°C)=4000

3)B
s
(25°C)=465 mT, 3)B

s
(100°C)=370 mT

a(25°C)=2.9, a(100°C)=5.1

µ
c
(25°C)=5500, µ

c
(100°C)=4300

H
c
(25°C)=21 A/m, H

c
(100°C)=13 A/m

Inductance:  L=1.3 mH
A

L
=160 nH +/- 3% (µ

e
=75.6) and N=90

Roll-off:   RO=20%

Result:
1) From Eq. 14 follows

L mHmin .=1 04

2) From Fig.  6:
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3) For T
2
=100°C with DTS (100°C)=8%:
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Conclusion
A well-defined dc-bias specification for ferrite cores with

a sufficiently large gap starts from the saturation proper-
ties of the core and the material via the 50% roll-off point.
Further consideration of tolerances and temperature ef-
fects makes it possible in a straightforward manner to have
consistent setting currents with one target minimum in-
ductance as required by most applications. The result is a
stable specification with higher values in both setting cur-
rent and minimum inductance as compared to the con-
ventional method.

The equations shown are not limited to the case of large
gaps, which represents the most common design case and
which can be handled in a simple way. As shown in [4] the
model can be also applied even for ungapped cores such as
rings. PETech
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temperature is given by (Eq. 17)
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DTS: cf. Fig. 6
The adaptation of these parameters mainly affects the

setting current given by Equation 15. Because of the com-
parably large gaps considered here (Eq. 8), the minimum
inductance may be considered as temperature-indepen-
dent. This is desirable from an application point of view
and correct as long as T

2
>T

1
. In most cases, µ

i
(T

2
)>µ

i
(T

1
).

The specification procedure can be therefore comple-
mented with a final step: 3.) Setting current at the tem-
perature T

2. 
(Eq. 18)
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The advantage of this equation as opposed to a direct
calculation for every temperature is that a known specifi-
cation that has been defined at, say, room temperature can
easily be transferred to a different temperature. Even
though the ratio of saturation values is the dominating fac-
tor (see example below), the DTS term is necessary to have
correct setting currents for all temperatures. The specifi-
cation procedure can be best illustrated by the following
example (Fig. 7):


