Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Intracerebral hemorrhage is a condition where a blood vessel in the brain ruptures and causes internal bleeding leading to hemorrhagic stroke. 800 in every 100,000 people suffer from stroke each year and it's one of the major causes of mortality worldwide. Diagnosis involves Neurological ... Mehr lesen
In high-speed digital design, strong electromagnetic coupling exists between adjacent transmission lines. This manifests itself in the form of crosstalk voltage induced on either line. Crosstalk is modeled in terms of capacitance and inductance matrices which are extracted using COMSOL ... Mehr lesen
The Micro electro mechanical systems (MEMS) technology provides us a platform to interface between mechanical and electrical components. In this paper, we have designed MEMS accelerometer based on piezoelectric property, and simulated using COMSOL Multiphysics®. The design, which has ... Mehr lesen
In this contribution we study how a planar photonic crystal waveguide (PhCW), created by introducing a line defect in the photonic crystal, can modify the projected local density of states (LDOS) for a dipole emitter. We use the COMSOL Multiphysics® RF Module to carry out eigenvalue ... Mehr lesen
Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and ... Mehr lesen
Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects ... Mehr lesen
The use of high power microwave energy for ablation of contaminated concrete is a promising technique to speed up the dismantling of nuclear power plants. A coupled simulation using COMSOL Multiphysics® finite element software is performed by solving the electromagnetic wave equation at ... Mehr lesen
Plasmonic resonances arising in gold nanoparticles lead to strongly localized near-field enhancements. These enhancements generate strong field gradients that can be exploited in particle trapping. On the other hand plasmonic resonances lead to enhanced absorption and heat generation. ... Mehr lesen
Influence of chiral objects on spontaneous emission of atoms and molecules is under attention nowadays. The problem of interaction of chiral molecules with one [1] or two chiral [2] spheres was solved analytically recently by our group. The analytical results however are very difficult ... Mehr lesen
Effective control over single atom emission might lead to major breakthrough in the field of nanotechnology. It is believed that use of hyperbolic metamaterials (HMM) can be helpful. COMSOL Multiphysics® was used to model interaction of electric dipole with effective HMM and calculate ... Mehr lesen