Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
The present work explores the integration of guided mode resonance (GMR) structures and topological photonics, characterized by the presence of Jackiw-Rebbi (J-R) solution. The developed surface enhanced GMR structure may serve as a platform for refractive index sensing across various ... Mehr lesen
The process-induced deformation in the DED fabricated part is a critical issue to the scaling of the technology. Currently, an inefficient and expensive experiment trial-and-error approach is utilized to tackle this issue, however it is not feasible for large parts. Researchers have ... Mehr lesen
As part of its research, the Group of Electrical Engineering Paris (GeePs) uses the COMSOL Multiphysics® software for applications in an Electrical Engineering context. At present, a multitude of problems, such as artificial intelligence and the database generation that goes with it, ... Mehr lesen
Thermal sterilization is a critical process in the food industry as it ensures the safety and shelf-life of food products for long-term preservation by eliminating all microorganisms and their spores from a food product. This process requires huge energy and water consumption, and ... Mehr lesen
This paper presents a finite element (FE) model of the scattering studies of cylindrical pressure housings made of different metallic alloys such as aluminium, stainless steel 316L and titanium. Understanding the acoustic scattering behavior of underwater objects helps in improving ... Mehr lesen
The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized. Mehr lesen
Microfluidics and Biosensors are two principal fields that paved the way for the inception of Lab-on-a-chip (LOC) which provides early and cost-effective disease detection, from monitoring to treatment. LOC is a device that uses very small amounts of fluid on a microchip to do certain ... Mehr lesen
A tablet blister cavity is thermally modelled using the Shell interface in COMSOL® and a response surface created to connect to other simulations such as process flow/cost models to form a surrogate model. This virtually represents a pharmaceutical tablet packaging line, that is ... Mehr lesen
Vibration-based Piezoelectric Energy harvesters convert ambient vibration energy into an applicable electrical charge for wireless sensors, IoT applications, and charging the battery, which is most important to range improvement of the Electric Vehicle. This study analyses different ... Mehr lesen
COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane rotational resonating MEMS sensor. The resonating sensor disk is driven by thermal expansion and contraction of the support tethers due to AC joule heating. The resonant frequency is ... Mehr lesen