Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
In modeling of thermal processing of biological materials with rapid evaporation, it is critical to provide boundary conditions consistent with the phenomena happening at the surface to accurately predict spatial temperature and moisture content for quality and safety assurance. Boundary ... Mehr lesen
Tim Poole graduated from Cambridge University with a Masters degree in Engineering in 2008 and immediately joined JDR Cables Systems, a leading supplier of custom subsea oil and gas umbilical systems and renewable energy cables. He started in the Research and Development team, working on ... Mehr lesen
A non-newtonian oil dispersion in a pulsed flow pipe system was mixed in a circulation loop pipe with custom-made static mixers. The rotor-pump was used in a non-pulsed flow circulation, and diaphragm pump for pulsed flow circulation. Modeling was done using COMSOL Multiphysics® 4.3b. ... Mehr lesen
In this paper an electromagnetic solenoid actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) Systems for Internal Combustion Engines. In opposition to ... Mehr lesen
With offshore oil and gas exploration and production moving into ever deeper waters, the suspended length of marine risers (transporting hydrocarbons from the seabed to the surface) can easily exceed 3000 meters. One of the major design requirements for risers in (ultra) deep water is to ... Mehr lesen
A multiphase porous media model involving heat and mass transfer within a potato chip was implemented in COMSOL 3.5a. The diffusive flux in oil and liquid water was modeled from capillary driven flow while the gas phase was modeled using binary diffusion. A non-equilibrium water ... Mehr lesen
One of the major challenges faced by the semiconductor industry is that electronic circuits produce a lot of heat energy during their operation. And with the current scenario where the gates are packed so much close together, then the problem of heat generation has become extremely ... Mehr lesen
Despite its wide use in industrial or culinary conditions, contact heating has not been extensively studied in the literature devoted to food products. This is mainly due to the difficulty in measuring in a non-invasive way the heat flux transferred as well as the thermal contact ... Mehr lesen
This paper presents a simulation of the operation of a new type of droplet generation probe. This probe, consisting of two concentrically-arranged tubings, is immersed in a beaker of cell medium so that oil is pumped through the outer tubing at a pumping speed less than fluid is drawn ... Mehr lesen
COMSOL Multiphysics® is used to simulate electric currents in pore-level unconsolidated and consolidated packings of spherical grains. In a nutshell 1) Predefined particle size distribution curves and porosities are used to reconstruct unconsolidated packings; 2) A modified image ... Mehr lesen