Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
Viscous damping has a significant effect on dynamic performance of the resonators operating within fluid. This work is aimed to find the viscous damping for MEMS torsional paddle operating in air. Interaction of moving structure with the fluid requires a complicated and challenging ... Mehr lesen
Wittbracht et al. proposed a technique to assemble monolayers of magnetic beads utilizing rotating magnetic fields. The magnetic beads align their magnetization with any applied magnetic field. As long as this field is homogeneous, the particles will only interact with each other. As ... Mehr lesen
Droplet flow at microscopic scale is often used to enhance many pharmaceuticals and industrial processes (i.e. liquid–liquid micro-extraction, nanoparticle synthesis, slow reactions in microfluidic devices, etc.). In all these processes, the mass transfer rate, at the interface between ... Mehr lesen
The Atlantis massif is a domal submarine seamount close to the mid-Atlantic Ridge at 30 °N. Close to the crest of the Massif, the Lost City hydrothermal field (LCHF) has been active for at least 120,000 years, venting fluids with a temperature of 40-90 °C. 5 km north of Lost City, a ... Mehr lesen
Paper based lateral flow assays are widely used as point of care devices for disease diagnostics due to their low cost, short run time and ease of use. Binder molecules specific for certain molecular biomarkers of interest are typically deposited as dots or lines on paper strips, ... Mehr lesen
A 3D electro-conjugate heat transfer model was made to study an embedded microfluidic/TEG system (μF/TEG) system. An innovative embedded microfluidic/TEG system (μF/TEG) system is proposed which enables a device to be able to provide power to its cooling system eliminating external power ... Mehr lesen
Capillary effects are common in microfluidics due to large surface-to-volume ratio of flows inside microchannels. In biological or chemical analysis, capillary flow is used for the transport of liquid and mixing enhancement, without applying any external means. It’s used in biochemical ... Mehr lesen
Extreme localized superheating and homogeneous vapor bubble nucleation have recently been demonstrated in a single nanopore in thin, solid state membranes [1]. Aqueous electrolytic solution present within the pore is superheated to well above its boiling point by Joule heating from ionic ... Mehr lesen
Digital Microfluidic Biochip (DMFB) has been widely used in Lab-on-a-Chip (LoC) for disease diagnosis and treatment applications. To quickly convert traditional analog fluidic sample into digital droplets for DMFB processing, a high-throughput microfluidic droplet dispenser device is ... Mehr lesen
In this research, we use the COMSOL Multiphysics® software to design and simulate a digital microfluidic droplet adapter for board-level biochip integration. Digital Microfluidic Biochip (DMFB) has gained tremendous research interest in recent years due to its importance in Lab-on-a-Chip ... Mehr lesen