Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird
Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Vorträgen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl, verwenden Sie die Schnellsuche, um eine bestimmte Präsentation zu finden, oder filtern Sie nach einem bestimmten Anwendungsbereich.
Sehen Sie sich die Kollektion für die COMSOL Conference 2024 an
A transient two-dimensional axisymmetric model is implemented in COMSOL Multiphysics® software to simulate temperatures, moisture contents distributions and cake swelling during the baking of cake contained in mold. The medium is assumed to be a deformable porous medium containing three ... Mehr lesen
Silk is one of the longest used and most recognizable textiles that we, as a society, use regularly. We see it as a luxury good, worn as an indicator of success and value. However, despite mankind having domesticated and farmed silkworms for millennia, we still know relatively little ... Mehr lesen
Latent heat storage devices use the melting enthalpy of a so-called phase change material (PCM) to store thermal energy. Open porous metals, such as 3D wire structures, allow the design of systems with tailored storage capacity and power. A geometric unit cell was identified, modelled ... Mehr lesen
A photoelectrochemical (PEC) cell uses solar energy to split water to hydrogen and oxygen in single integrated device. Electrochemical impedance spectroscopy is a suitable tool to characterize recombination and reaction mechanisms in PEC cell. Full numerical drift-diffusion calculations ... Mehr lesen
The assessment of the seismic safety of gravity dams is a topic of great importance in civil engineering. In this paper, fluid structure interaction modeling of gravity dams during earthquakes is investigated. In particular, this work aims to provide physical significance of a plan ... Mehr lesen
This study presents investigations on a developed process design for manufacturing internal precision geometries by pulsed electrochemical machining (PECM) with help of multiphysics simulations. Therefore, a 2D axisymmetric transient model was created. The considered physical phenomena ... Mehr lesen
Electromagnetic actuators are a well-known field where finite element simulations are applied. Magnetic Shape Memory (MSM) actuators represent a new type of smart electromagnetic actuators where the MSM material elongates and contracts when applying a magnetic field. The MSM material ... Mehr lesen
This paper describes the implementation of an app for calculating low frequency electric fields outside electrical installations. The app is based on a 2D parametric geometry chosen in such a way that it approximates a large class of electrical installations, which consist of a tower or ... Mehr lesen
Precise electrochemical machining (PEM) is a non-conventional machining technology, based on anodic dissolution of metallic work-pieces. In this study an additional extension of the precise electrochemical machining with a precise angle-controlled cylinder positioning is aimed. Due to ... Mehr lesen
This work presents the application of mathematical methods of model order reduction (MOR) for automatic generation of highly accurate, compact models for wireless power transfer systems. We apply a block two-sided second order Arnoldi algorithm to automatically compute a compact model, ... Mehr lesen